期刊文献+

一类新的罚函数与罚算法(英文)

A New Class of Penalty Functions and Penalty Algorithm
下载PDF
导出
摘要 在本文中,我们提出了带不等式约束的非线性规划问题的一类新的罚函数,它的一个子类可以光滑逼近l_1罚函数.基于此类新的罚函数我们给出了一种罚算法,这个算法的特点是每次迭代求出罚函数的全局精确解或非精确解.在很弱的条件下算法总是可行的.我们在不需要任何约束规范的情况下,证明了算法的全局收敛性.最后给出了数值实验. In this paper,we propose a new class of penalty functions for solving nonlinear programming problems with inequality constraints,a subclass of which smoothly approximates the l_1 penalty function.Based on the new class of penalty functions,we consider a penalty algorithm,the characteristic of which is at each iteration,an exact global optimal solution or an inexact global optimal solution is obtained.Under very weak conditions,the algorithm is always applicable. We present the global convergence without any constraint qualification.Finally, numerical experiments are given.
出处 《运筹学学报》 CSCD 2011年第1期25-34,共10页 Operations Research Transactions
基金 supported by the National Natural Science Foundation of China(10971118 10701047 10901096)
关键词 运筹学 非线性规划 全局收敛性 摄动函数 罚算法 Operations research nonlinear programming global convergence perturbation function penalty algorithm
  • 相关文献

参考文献8

  • 1Auslender A. Penalty and barrier methods: A unified framework[J]. SlAM Journal on Optimization, 1999, 10: 211-230.
  • 2Cominetti R., Dussault J.P. Stable exponential-penalty algorithm with superlinear convergence[J]. Journal of Optimization Theory and Applications, 1994,88: 285-390.
  • 3Gonzaga C.C., Castillo R.A. A Nonlinear Programming Algorithm Based on Noncoeercive Penalty Punetion[J]. Mathematical Programming (Set. A), 2003, 96: 87-101.
  • 4Herty M., Klar A., Singh A.K., et.al. Smoothed penalty algorithms for optimization of nonlinear models[J]. Computational Optimization and Applications, 2007, 37: 157-176.
  • 5Rubinov A.M., Glover B.M., Yang X.Q. Extended Lagrange and penalty function in continuous optimization[J]. Optimization, 1999, 46: 327-351.
  • 6Rubinov A.M., Glover B.M., Yang X.Q. Decreasing functions with applicationas to penalization[J]. SIAM Journal on Optimization, 1999, 10: 289-313.
  • 7Tseng P., Bertsekas D.P. On the convergence of the exponential multiplier method for convex programming[J]. Mathematical Programming, 1993, 60: 1-19.
  • 8Zangwill W.I. Nonlinear programming via penalty function[J]. Managenment Science, 1967, 13: 344-358.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部