期刊文献+

基于模糊c-均值聚类的SVC迭代训练算法 被引量:1

A SVC iterative learning algorithm based on fuzzy c-means clustering
下载PDF
导出
摘要 针对支撑向量机(Support vector machine,SVM)在大规模数据的问题,提出了一种基于模糊c-均值聚类样本选择策略的SVC(SVM for classification)迭代训练算法,从样本抽取、迭代训练两个方面进行了改进,并在多个较大规模UCI标准测试集上进行了试验.结果表明,所提出的迭代训练算法收敛快,在保证学习精度的同时使训练速度加倍、支撑向量减少一半. Focusing on an effective and efficient Support Vector Machine(SVM) classification training algorithm for large samples,a SVC(SVM for classification)iterative learning algorithm based on fuzzy c-means clustering of sample selection strategy was prompted,improved in sample selection iterative training.Experiments on several large-scale UCI data sets showed that,this algorithm could converge quickly with double training speed and cut down the number of support vectors by a half losing quite little accuracy.
出处 《仲恺农业工程学院学报》 CAS 2011年第1期39-43,共5页 Journal of Zhongkai University of Agriculture and Engineering
关键词 支撑向量机 大规模数据集 样本选择策略 迭代训练 support vector machine large samples sample selection strategy iterative training
  • 相关文献

参考文献9

  • 1BURGES C. A tutorial on support vector machines for pattern rec-ognition[ J]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 121 - 167.
  • 2KAUFMAN L. Solving the quadratic programming problem arising [ C ]// SCHOLKOPF B, BURGES C J C, SMOLA A J. Advances in Kernel-Methods : support vector learning. Cambridge : MIT Press, 1999:169-184.
  • 3KEERTHI S S, SHEVADE S K, BHATrACHARYYA C, et al. Improvements to Platt's SMO algorithm for SVM classifer Design [ J ]. Neural Computation, 2001,13 ( 3 ) :637 - 649.
  • 4林大瀛.基于分组聚类的SVM学习算法[D].广州:华南理工大学数学学院,2003.
  • 5LYHYAOUI A, MARTINEZ M, MORA I,et al. Sample selection via clustering to construct support vector-like classifiers[J]. IEEE Transactions on Neural Networks, 1999,10 ( 6 ) : 1474 - 1481.
  • 6BEZDEK J C. Pattern recognition with fuzzy objective function algorithm[ M]. New York: Plenum Press, 1981.
  • 7MUNRO P W. Repeat until bored : a pattern selection strategy[ C ] // MOODY J E, HANSON S J, LIPPMANN R P. Advances in Neural Information Processing Systems 4. San Mateo: Morgan Kaufmann Publisher, 1992: 1001- 1008.
  • 8KOHONEN T. The self-organizing map[ J ]. Proceedings of IEEE, 1990, 78(9) : 1464-1480.
  • 9MURPHY P M, AHA D W. UCI repository of machine learning database[ DB/OL]. [2010 -04 - 10] http: Jjwww. ics. uci. edu/ mlearrt/MLRepository, html.

同被引文献14

  • 1杨晓伟,闫丽.基于模糊分割的支持向量机分类器[J].计算机工程与应用,2007,43(28):187-189. 被引量:3
  • 2Vapnik V. Statistical learning theory [ M ]. Chichester: Wiley, 1998.
  • 3Kueck H, de Freitas N. Learning about individuals from group statistics [ C ]//Proc of UAI. Arlington, Virginia : AUAI Press, 2005:332-339.
  • 4Quadrianto N, Smola A J, Caetano T S, et al. Estimating labels from label proportions [ J ]. Journal of machine learning re- search ,2009,10:2349-2374.
  • 5Stefan R. SVM classifier estimation from group probabilities [ C]//Proceedings of the 27th international conference on ma- chine learning. Haifa, Israel : [ s. n. ] ,2010.
  • 6Chen B, Chen L, Ramakrishnan R, et al. Learning from aggre- gate views[ C]//Proceedings of the 22nd international confer- ence on data engineering. [ s. 1. ] : [ s. n. ] ,2006:3-12.
  • 7Dietterich T G, Lathrop R H, Lozano- Perez T. Solving the multiple instance learning with axis-parallel rectangles [ J ]. Artificial intelligence, 1997,89 ( 1/2 ) :31-71.
  • 8Musicant D, Christensen J, Olson J. Supervised learning by training on aggregate outputs [ C ]//Proc of 7th IEEE interna- tional conference on data mining. Omaha, NE : [ s. n. ], 2007 : 252-261.
  • 9Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods [ M ]//Ad- vances in large margin classifiers. [ s. 1. ] :MIT Press, 1999.
  • 10Lin C F, Wang S D. Training algorithms for fuzzy support vec- tor machines with noisy data [ J ]. Pattern recognition letters, 2004,25 (14) : 1647-1656.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部