期刊文献+

基于变步长的混合图像自适应盲分离算法 被引量:3

Adaptive Blind Separation Algorithm of Mixed Image Based on Variable Step-Size
下载PDF
导出
摘要 根据混合信号的分离程度,提出了一种新的图像信号分离算法,通过建立分离矩阵控制步长因子变化,利用自适应不完整自然梯度法实现图像的有效分离。新算法既很好地解决了固定步长算法收敛速度和稳态误差之间的矛盾,也解决了其他变步长算法须选择较小初始步长才能实现分离的问题。仿真结果表明新算法收敛速度快,稳态误差小,综合分离性能明显优于其他算法。 According to the separation level of mixed signal,a new separation algorithm of image signal is presented.The separation of images can be effectively achieved through the establishment of controlling step factor change in the separation matrix and the adoption of adaptive nonholonomic natural gradient method.The new algorithm serves as an excellent solution to solve the contradictions between the convergence speed and the stability error of the fixed step-size algorithm.It also settles the seperation problem without choosing a smaller initial step size.The simulation results demonstrate that the convergence speed and the steady-state errors of the new algorithm are improved and its comprehensive separation performance is obviously superior to those of other algorithms.
出处 《数据采集与处理》 CSCD 北大核心 2011年第2期156-161,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金-中物院NSAF联合基金(10776040)资助项目 国家自然科学基金(60602057)资助项目 教育部新世纪优秀人才支持计划(NCET-09-0928)资助项目 信号与信息处理重庆市市级重点实验室建设基金(2009CA2003)资助项目 重庆市自然科学基金(2009BB2287)资助项目
关键词 盲源分离 变步长 不完整自然梯度法 blind source separation variable step-size nonholonomic natural gradient algorithm
  • 相关文献

参考文献8

  • 1曾孝平,郑赞,刘国金.一种自适应的方向提升小波压缩算法[J].数据采集与处理,2009,24(5):600-604. 被引量:2
  • 2Amari S, Cichocki A, Yang H H. A new learning algorithm for blind signal separation [J]. Advances in Neural Information Processing Systems, 1996, 5: 757-763.
  • 3Cardoso J F, Laheld B H. Equivariant adaptive source separation [J]. IEEE Transactions Signal Processing, 1996,44 (12) : 3017-3030.
  • 4张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 5杜军,刘琚,李万龙.结合ICA预处理的麦克风阵列语音增强系统[J].数据采集与处理,2009,24(5):588-593. 被引量:2
  • 6Amari S. Natural gradient works efficiently in learning[J]. Neural Computation, 1998,10: 251-276.
  • 7Amari S, Chen T P, Cichocki A. Non-holonomic orthogonal learning algorithms for blind source separation[J]. Neural Computation, 2000, 12 (6): 1463- 1484.
  • 8Comon P. Independent component analysis, a new concept? [J]. Signal Processing, 1994, 36 (3): 287- 314.

二级参考文献78

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2Zelinski R. A microphone array with adaptive postfiltering for noise reduction in reverberant rooms [C]//ICASSP. New York,USA: [s. n. ], 1988, 5: 2578-2581.
  • 3Marro C, Mahieux Y, Simmer K U. Analysis of noise reduction and dereverberation techniques based on microphone arrays with post filtering [J]. IEEE Trans on Speech and Audio Processing, 1998, 6(3): 240-259.
  • 4Griffiths L J, Jim C W. An alternative approach to linearly constrained adaptive beamforming [J ]. IEEE Trans on Antennas Propagation, 1982, 30: 27-34.
  • 5Bitzer J, Simmer K U, Kammeyer K D. Theoretical noise reduction limits of the generalized sidelobe canceller (GSC) for speech enhancement[C]//ICASSP. Phoenix,USA:[s.n. ],1999, 5: 2965-2968.
  • 6Candes E J, Donoho D L. Curvelets: a surprisingly effective nonadaptive representation for objects with edges[C] // Curve and Surface Fitting. Saint-Malo: Vanderbilt University Press, 1999:123-143.
  • 7Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image represen- tation[J]. IEEE Trans on Image Processing, 2005, 14(12) : 2091-2106.
  • 8Donoho D L. Wedgelets: nearly minimax estimation of edges[J]. Ann Statist, 1999,27(3) : 859-897.
  • 9Pennec E L, Mallat S. Sparse geometric image representation with bandelets[J]. IEEE Trans on Image Processing, 2005, 14(4) :423-438.
  • 10Peyre G, Mallat S. Surface compression with geometric bandelets [ J ]. ACM Trans on Graphics, 2005, 24(3) :601-608.

共引文献212

同被引文献23

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部