期刊文献+

关于一类非零整系数互反多项式的Chebyshev变换

A Kind of Chebyshev Transform of Nonzero Reciprocal Polynomials with Integral Coefficients
下载PDF
导出
摘要 利用第1类、第2类Chebyshev多项式的性质,研究了形如P(n,n)(z)=z2n+1,Q(n,n)(z)=z2n+z2n-2+…+z2+1的非零整系数互反多项式的Chebyshev变换,给出了多项式P(mn,mn)(z),Q(mn-1,mn-1)(z)的Cheby-shev变换公式及一个推论. According to the properties of the first kind and the second kind Chebyshev polynomials,Chebyshev transform of some nonzero reciprocal polynomials with integral coefficients such as P(n,n)(z)=z2n+1,Q(n,n)(z)=z2n+z2n-2+…+z2+1 were studied,and Chebyshev transform formulas on the polynomials P(mn,mn)(z),Q(mn-1,mn-1)(z) and a corollary were obtained.
作者 王念良 孔亮
出处 《海南大学学报(自然科学版)》 CAS 2011年第1期1-3,共3页 Natural Science Journal of Hainan University
基金 陕西省教育厅科研计划项目支助(2010JK527) 商洛学院科研基金项目(09SKY039)
关键词 第1类Chebyshev多项式 第2类Chebyshev多项式 Chebyshev变换 非零实系数互反多项式 the first kind Chebyshev polynomial the second kind Chebyshev polynomial Chebyshev transform nonzero reciprocal polynomials with real coefficients
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]Freud G.Orthogonal Polynomials,Pergamon Press,Oxford-New york-Toronto Sydney-Braunschweig,1966.
  • 2[2]Romanoff N P.Hilbert space and number theory 1,1946(10):3-34.
  • 3[3]Erd'elyi A,Magnus W,Oberhettinger F,et aLHigher tnmscendantal functions lI,McGraw-Hill,New York-Tomto-Londen,1953.
  • 4[4]Dodd F W.Number theory in the quadratic field with golden section unit.Polygonal PubLI-Iouse,Washington,N J,1983.
  • 5[5]Ahlfors L V.Complex Analysis:3rd ed.McGraw-Hill,New York-Tomto-London,1979:71.
  • 6[6]S Kunemitsu,Tsukada H.Vistas of special functions,World Scientific,Singapore-London-New York,2007:147.
  • 7[7]Romanoff N P.Hilbert space and number theory Ⅱ,1951(15):131-152.
  • 8[8]Yoshido M.How to understand molocular orbitals?:2nd ed,Tokyo Kagaku Dojin,1979.
  • 9[9]Davis P J.Circulant matriccs,Wiley-Interscicnce,New York-Chichester-Brisbane-Toronto,1923.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部