摘要
利用第1类、第2类Chebyshev多项式的性质,研究了形如P(n,n)(z)=z2n+1,Q(n,n)(z)=z2n+z2n-2+…+z2+1的非零整系数互反多项式的Chebyshev变换,给出了多项式P(mn,mn)(z),Q(mn-1,mn-1)(z)的Cheby-shev变换公式及一个推论.
According to the properties of the first kind and the second kind Chebyshev polynomials,Chebyshev transform of some nonzero reciprocal polynomials with integral coefficients such as P(n,n)(z)=z2n+1,Q(n,n)(z)=z2n+z2n-2+…+z2+1 were studied,and Chebyshev transform formulas on the polynomials P(mn,mn)(z),Q(mn-1,mn-1)(z) and a corollary were obtained.
出处
《海南大学学报(自然科学版)》
CAS
2011年第1期1-3,共3页
Natural Science Journal of Hainan University
基金
陕西省教育厅科研计划项目支助(2010JK527)
商洛学院科研基金项目(09SKY039)