期刊文献+

一类具有分布时滞的p-Laplacian中立型泛函微分方程周期解的存在性

Periodic Solutions for a Class of p-Laplacian Neutral Functional Differential Equation with Distributed
下载PDF
导出
摘要 利用Mawhin延拓定理和泛函分析的知识,获得了一类具有分布时滞的p-Laplacian中立型泛函微分方程(φp(x(t)-cx(t-σ))')'+f(t,x'(t))+β(t)g(∫0-rx(t+s)dm(s))=e(t)周期解存在性新的充分条件,推广和改进了已有文献的相关结论,提出β(t)可变号. Mawhin coincidence degree theory and widely function-analysis's knowledge were used to obtain new sufficient condition of periodic solutions for a class of p-Laplacian neutral functional differential equation with distributed as follows: (φp(x(t)-cx(t-σ))′)′+f(t,x′(t))+β(t)g∫0-rx(t+s)dm(s)=e(t) The results improved the related reports in the literatures,and the coefficient β(t) was proposed.
出处 《海南大学学报(自然科学版)》 CAS 2011年第1期11-19,共9页 Natural Science Journal of Hainan University
基金 国家自然科学基金项目(10801047) 湖南文理学院芙蓉学院重点课题项目
关键词 分布时滞 p-Laplacian中立型泛函微分方程 周期解 Mawhin重合度 distributed p-Laplacian neutral functional differential equation periodic solutions Mawhin coincidence degree
  • 相关文献

参考文献8

  • 1PENG Shi-guo,ZHU Si-ning. Periodic solutions for p-Laplacian Rayleigh equalions with a deviating argument[ J ]. Nonlinear A- nalysis ,2007,67 : 13S - 146.
  • 2LU Shi-ping. Existence of periodic solutions to p-Laplac!an equation with a deviating argument [ J ]. Nonlinear Analysis,2008, 68 : 1453 - 1461.
  • 3CHEUNG Wing-sum, REN Jing-li. Periodic solutions for p-Laplacian Rayleigh equations [ J ]. Nonlinear Analysis, 2006,65 : 2003 - 2012.
  • 4彭世国.具有偏差变元的p-Laplacian中立型Liénard方程的周期解[J].数学年刊(A辑),2008,29(5):617-626. 被引量:8
  • 5朱艳玲,汪凯.具有p-Laplace算子的中立型泛函微分方程周期解[J].系统科学与数学,2009,29(6):808-817. 被引量:8
  • 6LU Shi-ping, GE Wei-gao,ZHENG Zu-xiu. Periodic solutiolls to lieuiral differential equalion with deviating arguments[ J ]. Ap- pl. Math. Comput ,2004,152 : 17 - 27.
  • 7HALE J K. Theory of Functional Differential Equations [ M ]. New York:Springer-Verlag, 1997.
  • 8GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equation[ M ] New York :Springer-Verlag. 1997.

二级参考文献28

  • 1Cheng W S, Ren J L. On the existence of periodic solutions for p-Laplacian generalized Lienard equation. Nonlinear Anal., 2005, 60: 65-75.
  • 2Lu S P, Ge W G, Zheng Zuxiu. Periodic solutions to neutral differential equation with deviating arguments. Appl. Math. Comput., 2004, 152: 17-27.
  • 3Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977.
  • 4Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977.
  • 5Del Pino M A, Elgueta M, Manasevich R F. A homotopic deformation along p of a Lerray-Schauder degree result and existence for (|u'|^P-2u')'+ f(t,u) = 0, u(0) = u(T) = 0,p > 1. J. Differential Equations, 1989, 80: 1-13.
  • 6Del Pino M A, Manasevich R F. Multiple solutions for the p-Laplacian under global nonresonance. Proc. Ameri. Math. Soc., 1991, 112: 131-138.
  • 7Fabry C, Fayyad D. Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Istit. Univ. Trieste, 1992, 24: 207-227.
  • 8Manasevich R F, Mawhin J. Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differential Equations, 1998, 145: 367-393.
  • 9DinR T, Iannacci R, Zanolin F. Existence and multiplicity results for periodic solutions of semilinear Duffing equations. J. Differential Equations, 1993, 105: 364-409.
  • 10DinR T, Iannacci R, Zanolin F. Time-maps for the solvability of perturbed nonlinear Duffing equations. Nonlinear Anal. Theory, Methods and Applications, 1991, 17: 635-653.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部