摘要
利用Mawhin延拓定理和泛函分析的知识,获得了一类具有分布时滞的p-Laplacian中立型泛函微分方程(φp(x(t)-cx(t-σ))')'+f(t,x'(t))+β(t)g(∫0-rx(t+s)dm(s))=e(t)周期解存在性新的充分条件,推广和改进了已有文献的相关结论,提出β(t)可变号.
Mawhin coincidence degree theory and widely function-analysis's knowledge were used to obtain new sufficient condition of periodic solutions for a class of p-Laplacian neutral functional differential equation with distributed as follows: (φp(x(t)-cx(t-σ))′)′+f(t,x′(t))+β(t)g∫0-rx(t+s)dm(s)=e(t) The results improved the related reports in the literatures,and the coefficient β(t) was proposed.
出处
《海南大学学报(自然科学版)》
CAS
2011年第1期11-19,共9页
Natural Science Journal of Hainan University
基金
国家自然科学基金项目(10801047)
湖南文理学院芙蓉学院重点课题项目