摘要
讨论了素域F(charF>2)上的Cartan型模李超代数W(m,n,t)作为W(m,t)的模的结构及其子模的一些性质.通过对W(m,n,t)的分解得到其W(m,t)子模的直和分解.这些子模中一些是同构W(m,t)的不可约模,其他的是相互之间同构的不可分解模.最后依据W(m,t)对其环面子代数的根空间分解,计算了W(m,n,t)的特征标公式.
In this article,we consider the constructions of the modular Lie superalgebra W(m,n,t) over a prime field F as a module of one of its subalgebras W(m,t) and some properties of its submodules by means of the adjoint action of W(m,t) on W(m,n,t).W(m,n,t) is a direct sum of its W(m,t)-submodules,of which some are irreducible modules that are all isomorphic to W(m,t),while the others are indecomposable modules between any two of which there is a unique isomorphism.In the last section,the character formula of W(m,n,t) is formulated by considering the vector space decomposition of W(m,t) over a torus.
出处
《徐州师范大学学报(自然科学版)》
CAS
2011年第1期18-20,共3页
Journal of Xuzhou Normal University(Natural Science Edition)
基金
中国矿业大学理科专项基金资助项目(JGK101660)