期刊文献+

一类非自治离散Hamiltonian系统的周期解 被引量:1

Periodic solution for a class of non-autonomous discrete Hamiltonian system
下载PDF
导出
摘要 研究了一阶非自治离散Hamiltonian系统周期解的存在性.在非线性项是线性增长条件时,将这类Hamilto-nian系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论中的鞍点定理,建立了此类系统周期解的存在性结果. In this paper,we study the existence of periodic solutions for first order non-autonomous discrete Hamiltonian system.When nonlinearity satisfies linear growth condition,we convert periodic solutions of the system into the critical points of a functional defined on a proper space and prove the existence of periodic solutions based on the saddle point theorem in the critical point theory.
作者 张申贵
出处 《徐州师范大学学报(自然科学版)》 CAS 2011年第1期31-34,共4页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家民委科研基金资助项目(05XB07) 西北民族大学中青年科研基金资助项目(X2007-012)
关键词 一阶离散Hamiltonian系统 线性增长条件 周期解 临界点 first order discrete Hamiltonian system linear growth condition periodic solution critical point
  • 相关文献

参考文献10

二级参考文献31

  • 1郭志明,庾建设.Existence of periodic and subharmonic solutions for second-order superlinear difference equations[J].Science China Mathematics,2003,46(4):506-515. 被引量:54
  • 2Xue Y F, Tang C L. Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system[J].Nonlinear Anal, 2007,67 (7):2072-2080.
  • 3Xue Y F, Tang C L. Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems[J]. Appl Math Comput, 2008,196 (2) : 494-500.
  • 4Zhou Z, Yu J S, Guo Z M. Periodic solutions of higher-dimensional discrete systems[J].Proc Roy Soc Edinburgh Sect A,2004,134(3) :1013-1022.
  • 5Yu J S, Guo Z M, Zou X F. Periodic solutions of second order self-adjoint difference equations[J].J London Math Soc, 2005,71 (2) : 146-160.
  • 6Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. New York: CBMS Reg Conf Ser in Math 65,1986.
  • 7Clark D C. A variant of the Liusternik-Schnirelman theory [J].Indiana Univ Math J,1972,22(1):65-74.
  • 8Guo Z M, Yu J S. The existence of periodic and subharmonic solutions of subquadratic second order difference equations[J]. J London Math Soc, 2003,68(2) :419-430.
  • 9Bin H H, Yu J S, Guo Z M. Nontrivial periodic solutions for asymptotically linear resonant difference problem [J]. J Math Anal Appl, 2006,322 ( 1 ) : 477-488.
  • 10Hale J K, Mawhin J. Coincidence degree and periodic solutions of neutral equations. J Differential Equations,1974, 15:295-307.

共引文献35

同被引文献9

  • 1XUE Yanfang, TANG Chunlei. Existence of a periodic solution for subquadratic second-order discrete Hamilto-nian system [J], Nonlinear Anal, 2007,67(7) : 2072-2080.
  • 2DENG Xiaoqing, SHI Haiping, XIE Xiaoliang. Periodic solutions of second order discrete Hamiltonian systemswith potential indefinite in sign [J]. Appl Math Comput, 2011,218(1) : 148-156.
  • 3YE Yiwei,TANG Chunlei. Periodic solutions for second-order discrete Hamiltonian system with a change ofsign in potential [J]. Appl Math Comput,2013, 219(12) : 6548-6555.
  • 4RABINOWITZ P H. On subharmonic solutions of Hamiltonian systems [J]. Comm Pure Appl Math, 1980,33(5): 609-633.
  • 5WANG Zhiyong, XIAO Jianzhong. On periodic solutions of subquadratic second order non-autonomous Hamilto-nian systems [J]. Appl Math Lett, 2015,40: 72-77.
  • 6ZHANG Zhitao. Variational,topological, and partial order methods with their applications [M]. Heidelberg:Springer, 2013 : 6-100.
  • 7SCHECHTER M. Linking methods in critical point theory [M]. Boston MA: Birkhauser Boston,2012 : 100-120.
  • 8慎闯,何延生,侯成敏.一类有序分数阶差分方程解的存在性[J].扬州大学学报(自然科学版),2013,16(1):12-16. 被引量:5
  • 9郭志明,庾建设.二阶超线性差分方程周期解与次调和解的存在性[J].中国科学(A辑),2003,33(3):226-235. 被引量:31

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部