期刊文献+

退火对FeCo基磁环巨磁阻抗效应的影响 被引量:1

Influence of annealing on giant magneto-impedance effect of FeCo-based alloy magnetic loop
下载PDF
导出
摘要 采用铜模吸铸法制备了Fe36Co36Nb4Si4.8B19.2非晶合金管,切成薄环后,用系列温度对其进行退火处理。然后用X射线衍射仪测试了样品的相组成,用HP4294A阻抗分析仪测量了样品的磁阻抗。分析了退火温度对FeCo基磁环环向驱动巨磁阻抗效应的影响,发现退火可以显著改善FeCo基磁环样品的环向巨磁阻抗效应,540℃退火样品的巨磁阻抗效应达到最佳,其阻抗比达286%。 A series of Fe36Co36Nb4Si4.8B19.2 amorphous alloy tubes were prepared by water-cooled copper mold method.The tubes were cut into thin loops,and were annealed at different temperatures.The phase structure of samples was tested by using X-ray diffractometer.Magneto-impedance of samples was measured by HP4294A impedance analyzer.The influence of annealing temperature on the GMI effect of FeCo-based alloy magnetic loop was analysed.The experiments showed that the GMI effect of FeCo-based alloy magnetic loop was enhanced by annealing,when magnetic loop of FeCo-based alloy was annealed at 540℃,the best GMI ratio of 286% can be obtained.
出处 《磁性材料及器件》 CAS CSCD 北大核心 2011年第2期25-27,36,共4页 Journal of Magnetic Materials and Devices
基金 国家自然科学基金资助项目(50871104)
关键词 FeCo非晶合金 磁环 退火 巨磁阻抗效应 amorphous FeCo alloy magnetic loop annealing GMI effect
  • 相关文献

参考文献6

  • 1Klement W, Willens R :H, Duwez P. Non-crystalline Structure in Solidified gold-silicon Alloys [J]. Nature, 1960, 187 (4740) : 869-870.
  • 2Panina L V, Morhi K. Magneto-impedance in Effect Amorphous Wires [J]. Appl Phys Lett, 1994, 65(9): 1189-1191.
  • 3Hemando B, Sanchez M L, Prida V M, et al. Magnetoimpedance effect in amorphous and nanocrystaUine ribbons [J]. J Appl Phys, 2001, 90(9): 4783-4790.
  • 4杨介信,杨燮龙,陈国,蒋可玉,沈国土,胡炳元,金若鹏.一种新型的纵向驱动巨磁致阻抗效应[J].科学通报,1998,43(10):1051-1053. 被引量:57
  • 5Shen B L, Inoue A, Chang C T. superhigh strength and good soft-magnetic properties of Fe-Co-B-Si-Nb bulkglassy alloys with high glass-forming ability [J]. Appl Phys Lett, 2004, 85(21): 4911-4913.
  • 6满其奎,方允樟,孙怀君,叶方敏.FeCo基合金的一种新型纵向驱动巨磁阻抗效应[J].科学通报,2007,52(23):2720-2724. 被引量:6

二级参考文献18

  • 1杨燮龙,陈越民,胡炳元,李香箐,蒋可玉,金慧娟,许桂琴,张延忠.Fe基纳米微晶晶化相的穆斯堡尔谱和核磁共振研究[J].科学通报,1995,40(12):1083-1086. 被引量:2
  • 2Li X Q,J Magn Magn Mater,1995年,145卷,125页
  • 3Phan M H, Peng H X, Yu S C, et al. Optimized giant magnetoimpedance effect in amorphous and nanocrystalline materials. J Appl Phys, 2006, 99:08C505.
  • 4Giouroudi I, Hauser H, Musiejovsky L, et al. Giant magnetoimpedance sensor integrated in an oscillator system. J Appl Phys, 2006, 99:08D906.
  • 5Kurlyandskaya G V, Miyar V F, Saad A, et al. Giant magnetoimpedance: A label-free option for surface effect monitoring. J Appl Phys, 2007, 101:054505.
  • 6Nakai T, Ishiyama K, Yamasaki J. Analysis of steplike change of impedance for thin-film giant magnetoimpedance element with inclined stripe magnetic domain based on magnetic energy. Appl Phys, 2007, 101:09N106.
  • 7Park D G, Kim C G, Lee J H, et al. Effect of ion irradiation on a co-based amorphous ribbon. J Appl Phys, 2007, 101:09N109.
  • 8Yabukami S, Mawatari H, Horikoshi N, et al. A design of highly sensitive GMI sensor. J Magn Mter, 2005, 290-291:1318-1321.
  • 9Menard D, Rudkowska G, Clime L, et al. Progress towards the optimization of the signal-to-noise ratio in giant magnetoimpedance sensors. Sens Actuators A, 2006, 129:6-9.
  • 10Chiriac H, Tibu M, Moga A E, et al. Magnetic GMI sensor for detection of biomolecules. J Magn Magn Mater, 2005, 293:671-676.

共引文献57

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部