期刊文献+

曲率相关的爆轰波在非结构四边形网格上的数值方法 被引量:1

Numerical Schemes for Detonation Front on Curvature on Unstructured Quadrilateral Meshes
下载PDF
导出
摘要 假设爆轰波阵面的法向速度是曲率的线性函数,在非结构四边形网格上采用水平集方法模拟爆轰波阵面的运动过程.水平集方程的曲率无关项采用正格式离散,曲率项采用伽辽金等参有限元方法空间离散,时间离散采用半隐格式.在笛卡儿网格和随机网格上,含曲率的水平集方程的离散格式为强一阶精度,重新初始化方程的离散格式精度为近似一阶精度.曲率收缩的不光滑界面和多个爆轰波阵面相互作用的算例说明格式可有效地模拟爆轰波与曲率相关的运动. Assuming that detonation normal velocity is a linear function of curvature,we study propagation of detonation front on unstructured quadrilaterals with level set method.Convection term in leve set equation is solved by positive scheme,and curvature term is solved by Galerkin isoparametric finite element method and semi-implicit time stepping.On Cartesian meshes and random meshes,the scheme of level set equations containing curvature is more than first order accuracy in L2 and L∝ norms.Examples of nonsmooth level sets shortening and three detonation fronts colliding show that the schemes can be used to simulate propagation of detonation front on curvature.
作者 程俊霞
出处 《计算物理》 EI CSCD 北大核心 2011年第2期199-206,共8页 Chinese Journal of Computational Physics
基金 中物院科技发展基金(2007A09006) 实验室基金(9140C690101070C69 9140C6901030803) 国家重大基础研究基金(2005CB32170) 国家自然科学基金(10901022)资助项目
关键词 爆轰波阵面 水平集方程 非结构四边形网格 伽辽金等参有限元方法 detonation front level set equations unstructured quadrilateral meshes Galerkin isoparametric finite element method
  • 相关文献

参考文献1

二级参考文献18

  • 1Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. J Comput Phys, 1988,79 : 12 - 49.
  • 2Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces [ M ]. Berlin:Springer,2003.
  • 3Sethian J A. Level set methods and fast marching methods [M]. Cambridge: Cambridge University Press, 1999.
  • 4Juric D, Tryggvason G. A front-tracking method for dendritic solidification [ J]. J Comput Phys, 1996,123 : 127 - 148.
  • 5Glimm J, Grove J, Li X L, Tan D C. Robust computational algorithms for dynamic interface tracking in three dimensions [ J ]. SIAM J Sci Comput,2000,21:2240 - 2256.
  • 6Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y - J. A front-tracking method for the computations of multiphase flow [ J ]. J Comput Phys, 2001,169 : 708 - 759.
  • 7Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing [J] .J Comput Phys, 2002,183:83- 116.
  • 8Aulisa E, Manservisi S, Scardovelli S. A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking [ J ]. J Comput Phys, 2004,197 : 555 - 584.
  • 9Du J, Fix B, Glimm J, Jia X, Li X, Li Y, Wu L. A simple package for front tracking [J] .J Comput Phys,2006,213:613 -628.
  • 10Enright D, Losasso F, Fedkiw R. A fast and accurate semi-Lagrangian particle level set method [J]. Comput Struet, 2005,83:479- 490.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部