摘要
利用函数的高阶空间导数值构建其高次插值,得到高阶CIP(Constrained Interpolation Profile)数值算法,并在此基础上模拟研究等离子体物理中著名的伏拉索夫-泊松(Vlasov-Poisson)方程相关物理问题.高阶CIP数值方法具有更高数值精度,从而可以在同等精度的情况下减少计算格点数,加速数值计算速度.
A high-order CIP(Constrained Interpolation Profile,HCIP) method is developed by constructing a high-order interpolation function based on high-order spatial derivatives.Numerical errors of both HCIP scheme and a standard CIP(SCIP) scheme proposed by Yabe and et al are studied.With HCIP method,we investigate numerically physical problems in the famous Vlasov-Poisson equation,such as Landau damping and two-stream instability.It shows that HCIP method is a fifth-order accuracy scheme.Its accuracy is higher than that of SCIP method.Dynamical evolution due to Landau damping in an electrostatic plasma simulated by HCIP method agrees well with previous results.By reducing the number of grids calculation speed is increased with same accuracy.
出处
《计算物理》
EI
CSCD
北大核心
2011年第2期259-267,共9页
Chinese Journal of Computational Physics
基金
国家自然科学基金(10770543)
国家磁约束核聚变研究专项(2009GB105002
2010GB106006)资助项目