期刊文献+

求正定几何规划全局最优解的一种有效算法

下载PDF
导出
摘要 对正定几何规划问题提出了一种确定型的全局优化算法,这类优化问题广泛应用于工程设计的稳定性分析等实际问题中.这种算法给出了一种构造目标函数及约束函数下界函数的新方法,从而建立了正定几何规划问题的松弛线性规划.通过对线性规划问题的可行域细分以及一系列的线性规划问题的求解,从理论上证明了该算法的全局收敛性.
出处 《长沙大学学报》 2011年第2期1-2,共2页 Journal of Changsha University
  • 相关文献

参考文献7

  • 1Wang Y, Wang X. Second - order method of generalized geometric programming for spatial frame optimization[ J]. Computer Methods in Applied Mechanics and Engineering, 1997,14 ( 1 ) : 117 - 123.
  • 2Shen P, Zhang K. Global optimization of signomial geometric pro- gramming using linear relaxation[ J]. Applied Mathmatics and Com- putation,2004,150( 1 ) :99 - 114.
  • 3Sherali H D,Tuncbilek C H. Comparison of two reformulation- lin- earization technique based linear programming relaxation for polyno- mial programming problems [ J ]. Journal of Global Optimization, 1997,10(4) :381 -390.
  • 4申培萍,李晓爱.求符号几何规划全局解的新方法[J].工程数学学报,2006,23(5):876-880. 被引量:4
  • 5申培萍,杨长森.广义几何规划的全局优化算法[J].数学物理学报(A辑),2006,26(3):382-386. 被引量:4
  • 6王燕军,张可村.符号几何规划的一种分解方法[J].系统科学与数学,2006,26(4):385-394. 被引量:3
  • 7Wang Y, Shen P, Liang Z. A brancb and bound algorithm to global- ly solve the sum of several linear ratios [ J ]. Applied Mathmatics and Computation,2005,168 ( 1 ) :89 - 101.

二级参考文献17

  • 1隋树林,贺国平.一般的正项几何规划的一种分解方法[J].应用数学学报,1995,18(3):321-328. 被引量:4
  • 2Sherali H D, Tuncbilek C H. Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems. Journal of Global Optimization, 1997, 10:381-390
  • 3Sherali H D. Global optimization of nonconvex polynomial programming problems having rational exponents. Journal of Global Optimization, 1998, 12; 267-283
  • 4Maranas C D, Floudas C A. Global optimization in generalized geometric programming. Computers Chemical Engineering, 1997, 21(4): 351-369
  • 5Shen Peiping, Zhang Kecun. Global optimization of signomial geometric programming using linear relaxation. Applied Mathematics and Computation, 2004, 150:99-114
  • 6Ron S Dembo. A set of geometric programming test problems and their solutions. Mathematical programming, 1976, 10:192-213
  • 7Alejandre J L,Allueva A I and Gonzalez J M.A new algorithm for geometric programming based on the linear structure of its dual problem.Mathematical and Computer Modelling,2000,31:61-78.
  • 8Passy U,Wilde D J.Generalized polynomial optimization.Journal on Applied Mathematics,1967,15(5):1344-1356.
  • 9Avriel M,Dembo R,Passy U.Solution of generalized geometric programs.Internat.J.Numer.Methods Engrg.,1975,9:149-169.
  • 10Ecker J G.Geometric programming:Methods,computations and applications.SIAM Review,1980,22(3):338-362.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部