期刊文献+

矩阵方程AXB-CXD=R的多项式解法 被引量:1

Solution of matrix equation AXB-CXD=R with polynomial transformation
下载PDF
导出
摘要 将利用线性变化,构造一多项式,从而将矩阵方程AXB-CXD=R转化为一容易求解的方程,并给出了矩阵方程AXB-CXD=R有唯一解时的显示表达式X=-(Ck+1)-1Sk(R)E-1或X=F-1Sk(R)(Bk+1)-1,所得到的结果推广了有关文献的相关结论. Using the linear transformations to construct a polynomial,we change the matrix AXB-CXD=R into a new matrix equation,which could be soluted in easy.When the matrix equation AXB-CXD = R has a unique solution,we can give the unique solution X=-(C^k+1)^-1Sk(R)E^-1or X=F^-1Sk(R)(B^k+1)^-1 These results develop that in some papers.
作者 盛兴平
出处 《阜阳师范学院学报(自然科学版)》 2011年第1期1-4,共4页 Journal of Fuyang Normal University(Natural Science)
基金 安徽省自然科学基金(10040606Q47) 安徽高等学校省级自然科学研究重点项目(KJ2010A253)
关键词 矩阵方程 线性变化 多项式 matrix equation linear transformation polynomial
  • 相关文献

参考文献10

  • 1Datta K. The matrix equationXA - BX = R and its ap- plications [ J ]. Linear Algerbra and Its Application, 1998,109:91-105.
  • 2Desouza E, Bhattacharya S. P. Controllability, observ- ability and the solutionofAX - XB = C [ J ]. Linear A1- gerbra and Its Application, 1981,39 : 167-188.
  • 3Chu K.E. The solution of matrix equations AXB - CXD = Eand ( YA - DZ, YC - BZ) = ( E, F) [ J ]. Linear A1- gerbra and its Application, 1987,93:93-105.
  • 4DattaB. N. Linear and numerical linear algebra in control theory : some research problems [ J ]. Linear Algebra and Its Applcation, 1994,197/198:755-790.
  • 5Jameson A. Solution of equation AX- XB = C by in- version of an M x M or N x N matrix [J]. SIAM Journal on Applied Mathematics, 1968,16:1020-1023.
  • 6Datta K, Hong Y. Application of linear Transformations to matrix equations [ J ]. Linear Algerbra and Its Appli- cation, 1997,267:221-240.
  • 7Jiang T, Wei M. On solution of the matix equations X - AXB = C and A - AXB = C [ J ]. Linear Algerbra and Its Application, 2003,367:225 -233.
  • 8Ben IsraelA. GrevilleT N E. , Generali, zed inverse: Theo- ry and Applications [ M ]. 2nd Edition. New York: Springer Verlag, 2003.
  • 9Lancaster P. Explicit solution of linear matrix equations [ J ]. SIAM Review, 1970,12:544-566.
  • 10Carlson D, I_oewy R. On ranges of Lynaptmov transfor- mations [ J ]. Linear Algerbra and Its Application, 1974,8 : 237-248.

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部