期刊文献+

四阶常微分算子特征值的重数相等 被引量:1

Equality of Multiplicities of a 4-Order Ordinary Differential Operator Eigenvalue
下载PDF
导出
摘要 借助解析重数和几何重数的基本定义及边界条件的几何结构,证明了自伴的四阶常微分算子特征值的解析重数与几何重数是相等的,该结论是对常型Sturm-Liouville问题相关结果的推广. By virtue of analytic and geometric multiplicities' basic definition and the geometric structure on the space of boundary conditions,the equality between analytic and geometric multiplicities of an adjoint forth-order ordinary differential operator are proved,which is an analogue to the case of the regular Sturm-Liouville problem.
作者 林运春
出处 《肇庆学院学报》 2011年第2期8-14,共7页 Journal of Zhaoqing University
基金 广东省自然科学基金资助项目(9251064101000015)
关键词 四阶常微分算子 自伴边条件 解析重数 几何重数 forth-order ordinary differential operator self-adjoint boundary conditions analytic multiplicities geometric multiplicities
  • 相关文献

参考文献4

  • 1EASTHAME M,KONG Q,WU Hongyou, et al. Inequalities among eigenvalues of Sturm-Liouville problems[J].JInequal Ap- pl, 1999(3): 25-43.
  • 2KONG Q,WU Hongyou,ZETTL A.Geometrie aspects of Sturm-Liouville problem I.Structures on spaces of boundary condi- tions[J].ProcRoySocEdinburgh SeetA, 2000,130:561-589.
  • 3WANG Zong,WU Hongyou.Equality of multiplicities of a Sturm-Liouville eigenvalue[J].JMath Anal Appl,2005,306: 540-547.
  • 4CAO Xifang,WU Hongyou.Geometric aspects of High-order eigenvalue problems I.Structures on spaces of boundary condi- tions[J].IJMMS,2004,13:647-678.

同被引文献5

  • 1Wang Z,Wu H. Equality of multiplicities of a Sturm-Liouville eigenvalue[J].Journal of Mathematical Analysis and Applications,2005,(03):540-547.doi:10.1016/j.jmaa.2004.10.041.
  • 2Kong Q,Wu H,Zettl A. Geometric aspects of Sturm-Liouville problems I.Structures on spaces of boundary conditions[J].PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS,2000,(03):561-589.
  • 3Cao X,Wu H. Geometric aspects of High order eigenvalue problems I.Structures on spaces of boundary conditions[J].IJMMS,2004.647-678.
  • 4Shang Z. On J-self-adjoint extensions of J-symmetric ordinary differential operators[J].Diff J Equat,1988,(02):153-177.
  • 5王忠,付守忠.向量值J-对称微分算子的J-自伴延拓[J].内蒙古大学学报(自然科学版),1999,30(4):439-442. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部