摘要
借助解析重数和几何重数的基本定义及边界条件的几何结构,证明了自伴的四阶常微分算子特征值的解析重数与几何重数是相等的,该结论是对常型Sturm-Liouville问题相关结果的推广.
By virtue of analytic and geometric multiplicities' basic definition and the geometric structure on the space of boundary conditions,the equality between analytic and geometric multiplicities of an adjoint forth-order ordinary differential operator are proved,which is an analogue to the case of the regular Sturm-Liouville problem.
出处
《肇庆学院学报》
2011年第2期8-14,共7页
Journal of Zhaoqing University
基金
广东省自然科学基金资助项目(9251064101000015)
关键词
四阶常微分算子
自伴边条件
解析重数
几何重数
forth-order ordinary differential operator
self-adjoint boundary conditions
analytic multiplicities
geometric multiplicities