期刊文献+

求解WCVaR的光滑化方法

A Smoothing Method for Solving Model Under WCVaR
下载PDF
导出
摘要 聚焦基于WCVaR下,风险——利润的组合优化模型的计算问题,在随机变量服从离散界约束和损失函数为线性的条件下,根据已研究的半光滑化方法,将化简后的模型光滑化,并建立了SQP光滑化算法,并验证了该算法的全局收敛性. This paper focuses on the computation of profit-risk portfolio models based on WCVaR,Under the case of the box discrete distribution of random variables and the linear loss Function,According to the semismoothness of the studied models,The models is smoothed,A smoothing SQP algorithm is presented.The global convergence of the algorithm is Established.
作者 胡琴琴
出处 《邵阳学院学报(自然科学版)》 2011年第1期8-13,共6页 Journal of Shaoyang University:Natural Science Edition
关键词 条件风险(CVaR) 最坏情况下的条件风险(WCVaR) 光滑化方法 conditional value-at-risk(CVaR) worst-case conditional value-at-risk(WCVaR) Smoothing method
  • 相关文献

参考文献18

  • 1D.dentcheva and A.Ruszczynski, Portfolio optimization with stochastic dominance constraints, J.Banking and Finance, 30(2006),433-451.
  • 2P.Krok hmalJ.Palmquist and S.Uryasev, Portofolio of optimization with conditional value-at-risk objective and constrains,The Joumal of Risk, Vol.4,No.2,2002,11-27.
  • 3C.Lim,H.D. Sherali and S.Uryasev, Potfolio optimization by minimizing conditional value-at-risk via nondifferentiable Optimization, Comput.Optim.Appl., 2008,Online DOI 10.1007/s10589-008-9196-3.
  • 4N.Miller and A.Ruszczynski, Risk-adjusted probability measures in porto folio optimization with coherent measures of risk,European Journal of Operational Research, 191 (2008), 193 - 206.
  • 5R.T.Rockafellar and S.Uryasev,Conditional value-at-risk for general loss distributions,Journal of Banking andFinance,26(2002),1443-1471.
  • 6S.S.Zhou and M.FuKushima. Worst-case conditional value-At-Risk with application to Robust portfolio management, Working paper,Department of Applied Mathematics and Physis.Kyoto University,2006.
  • 7R.Mansini,W.Ogryczak,and M.G.Speranza, Conditional value at risk and related linear programming. Ann.Oper.Res. , 152(2007),227-256.
  • 8C.Beliakov and A.Bagirov,Non-smooth optimization methods for computation of the conditional value-at-risk and portfolioOptimization,Optimization,Vol.55,No.5- 6 (2006),459-479.
  • 9A.Kunzi-Bay and J.Mayer, Computational aspects of minimizing conditional value-at-risk, Computayional Management Seience,3(2006),3-27.
  • 10L.Qi, Convergence analysis of some algorithms for solving nonsooth equations, Mathematics of operations Research, 18(1993)227-244.

二级参考文献15

  • 1郭金,江伟,谭忠富.风险条件下供电公司最优购电问题研究[J].电网技术,2004,28(11):18-22. 被引量:79
  • 2王壬,尚金成,冯旸,周晓阳,张勇传,游义刚.基于CVaR风险计量指标的发电商投标组合策略及模型[J].电力系统自动化,2005,29(14):5-9. 被引量:96
  • 3王壬,尚金成,周晓阳,张勇传,张士军.基于条件风险价值的购电组合优化及风险管理[J].电网技术,2006,30(20):72-76. 被引量:46
  • 4Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 3(7): 77-91.
  • 5Alexander G J, Baptista A M. Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis[J]. Journal of Economic Dynamics and Control, 2002, 26:1159-1193.
  • 6Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. The Journal of Risk, 2000, 2(3): 21-41.
  • 7Krokhmal P, Palmquist J, Uryasev S. Portfolio of optimization with conditional value-at-risk objective and constraints[J]. The Journal of Risk, 2002, 4(2): 11-27.
  • 8Goldfare D, Iyengar G. Robust portfolio selection problemds[J]. Mathematics of Operations Research, 2003, 28(1): 1-38.
  • 9Lobo V L, Boyd S, Lebert H. Second order cone programming: Interior-point methods and engineering applications[J]. Linear Algebra Application, 1998, (284): 193-228.
  • 10Costa O L V, Paiva A C. Robust portfolio selection using linear-matrix inequalities[J]. Journal of Economic Dynamics & Control, 2002, 26(6): 889-909.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部