期刊文献+

海洋平台用EQ70高强钢焊接性研究 被引量:8

Welding performance of EQ70 high-strength steel for offshore platform
下载PDF
导出
摘要 采用CONARC80焊条手工电弧焊接EQ70钢,研究了焊接工艺对接头性能的影响.结果表明:在焊后热处理的条件下,其接头强度在焊接电流为180 A或200 A时,均能和母材等强;当焊接电流达到220 A时,则接头强度低于母材;EQ70钢焊接接头在室温均具有很好的冲击韧性;在150℃预热、200 A焊接电流和焊后热处理的条件下,焊接接头各区域在-40℃的冲击值最佳,达到母材的95%以上;EQ70钢焊接接头的冷弯性能均合格.焊缝硬度和母材相当,但热影响区的硬度值偏高,超过平均水平5%~10%;结合海洋平台工作环境对低温韧性的要求,推荐EQ70钢焊接工艺为150℃预热2、00 A焊接电流以及250℃/2h焊后热处理的规范. CONARC80 electrode is used for EQ70 steel manual metal arc welding process.The research results show that in the condition of post-weld heat treatment,the joint strength is the same as the base metal in the welding current of 180 A and 200 A.When the welding current is increased to 220 A,the joints strength is smaller than the base metal.The EQ70 steel welded joints provide excellent impact ductility at room temperature.In the condition of 150 ℃ preheating treatment,200 A welding current and post-weld heat treatment,each area of the weld joints shows the best impact ductility at-40℃,and is more than 95% of the base metal.The cold bending performances of EQ70 steel weld joints are all qualified.The weld bead provides the same hardness as the base metal,but the HAZ hardness is 5%~10% more than the average.Squaring up the working environment of offshore platform requirements on low temperature toughness,recommended EQ70 steel welding process is 150 ℃ preheating treatment,200 A welding current and 250 ℃/2h post-weld heat treatment.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2011年第1期27-30,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家高技术研究发展计划基金资助项目(2006AA09A103-6) 工业和信息化部深海半潜式钻井平台工程开发科研基金资助项目(工信部装[2009]382号)
关键词 海洋平台 EQ70高强钢 焊接工艺 焊接性 offshore platform EQ70 high strength steel welding procedure welding performance
  • 相关文献

参考文献5

二级参考文献15

  • 1石理国,姚木林,周敏健.海上平台管节点疲劳性能研究[J].中国造船,1994,35(1):54-64. 被引量:7
  • 2陈国明,方华灿.海洋平台管节点应力强度因子的工程计算模型[J].石油大学学报(自然科学版),1995,19(1):121-129. 被引量:5
  • 3[4]ONOUFRIOU T.Reliability based inspection planning of offshore structures[J].Marine Structures,1999,12:521-539.
  • 4[5]BAKER M J,DESCAMPS B.Reliability-based methods in the inspection planning of fixed offshore steel structures[J]..Journal of Constructional Steel research,1999,52:117-131.
  • 5[6]ONOUFRIOU T,FRANGOPOL D M.Reliability-based inspection optimization of complex structures:a brief retrospective[J].Computers and Structures,2002,80:1133-1144.
  • 6[7]MADHAVAN PILLAI T M,MEHER P A.Fatigue reliability analysis in time domain for inspection strategy of fixed offshore structures[J].Ocean Engineering,2000,27:167-186.
  • 7[9]NEWMAN J C,RAJU I S.An empirical stress-intensity factor equation for the surface crack[J].Eng.Fracture Mechanics,1981,15(2):185-192.
  • 8[10]MAHMOUD M A,HOSSEIN A.Assessment of stress intensity factor and aspect ratio variability of surface cracks in bending plates[J].Eng.Fracture Mechanics,1986,24(2):207-221.
  • 9[11]CONNOLLY M P.Prediction of the remaining fatigue life of tubular joints[J].OTC 6904,1992:69.
  • 10[12]FORBES J,GLINKA G,BURNS D J.Fracture mechanics analysis of fatigue cracks and load shedding in tubular welded joints[J].Proc 11th OMAE,1992,3:307-312.

共引文献83

同被引文献93

引证文献8

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部