期刊文献+

不完全测量情形下非线性离散时滞系统的模糊H_∞滤波 被引量:1

Fuzzy H_∞ filtering of nonlinear discrete time-delay systems with incomplete measurements
下载PDF
导出
摘要 针对非线性离散时滞模糊系统,研究其不完全测量情形下的H∞滤波问题.假设非线性项满足扇形条件,并利用服从Bernoulli分布的随机变量来描述不完全测量.目的是设计H∞滤波器,使得滤波误差系统均方指数稳定且满足给定的干扰抑制水平.首先,基于模糊Lyapunov泛函得到了滤波误差系统均方指数稳定的时滞依赖充分条件.然后,给出了H∞滤波器的设计方法.H∞滤波器的参数可通过求解一组线性矩阵不等式得到. In this paper,the H∞ filtering problem is considered for a class of nonlinear discrete time-delay systems with incomplete measurements,where the nonlinearities are assumed to satisfy sector conditions,and the incomplete measurements are described by a stochastic variable that obeys Bernoulli distribution.The aim is to design filters such that the filter error system is mean-square exponentially stable with a prescribed disturbance attenuation level.First,based on a fuzzy Lyapunov functional,delay-dependent sufficient conditions on the mean-square exponential stability of the filter error system are derived.Then,the H∞ filter design approach is proposed.The filter parameters can be obtained by solving a set of linear matrix inequalities(LMIs).
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2011年第1期60-67,共8页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK2010275) 江苏省高校"青蓝工程"资助项目 南通市应用研究计划资助项目(K2009035)
关键词 离散模糊系统 时滞系统 不完全测量 H∞滤波 线性矩阵不等式 discrete-time fuzzy systems time-delay systems incomplete measurements H∞ filtering linear matrix inequality
  • 相关文献

参考文献12

  • 1Wang H O, Tanaka K, Griffin M F. An approach to fuzzy control of nonlinear systems: stability and design issues [J]. IEEE Transactions on Fuzzy Systems, 1996, 4( 1 ) :14 - 23.
  • 2Tanaka K, Hori T, Wang H O. A multiple Lyapunov function approach to stabilization of fuzzy control systems [ J ]. 1EEE Transactions on Fuzzy Systems, 2003, 11 (4) : 582 -589.
  • 3Feng G. A survey on analysis and design of model-based fuzzy control systems [ J ]. IEEE Transactions on Fuzzy Systems, 2006, 14 (5 ) : 676 - 697.
  • 4Zhang X M, Lu G P, Zheng Y F. Stabilization of net- worked stochastic time-delay fuzzy system with data dropout [ J ]. IEEE Transactions on Fuzzy Systems, 2008, 16 (3) :798 - 807.
  • 5Assawinchaichote W, Nguang S K. H∞ filtering for fuzzy singularly perturbed systems with pole placement constraints: an LMI approach[ J]. IEEE Transactions on Signal Processing, 2004, 52(6):1659- 1667.
  • 6Lin Y C, Lo J C. Robust mixed filtering for time-delay fuzzy systems [ J ]. IEEE Transactions on Signal Processing, 2006, 54:2897-2909.
  • 7Zhou S S, Lam J, Xue A K. H∞ filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approachIJ]. Fuzzy Sets and Systems, 2007, 158:180 - 193.
  • 8Feng G, Chen M, Sun D, et al. Approaches to robust fil- tering design of discrete-time fuzzy dynamics systems [ J ]. IEEE Transactions on Fuzzy Systems, 2008, 16(2) :331 - 340.
  • 9Zhang J H, Xia Y Q. New LMI approach to fuzzy filter designs [ J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56(9) :739 -743.
  • 10Jiang B, Mao Z, Shi P. H∞-filter design for a class of networked control systems via T - S fuzzy-model ap- proach[ J]. IEEE Transactions on Fuzzy Systems, 2010, 18(1) : 201 -208.

同被引文献8

  • 1Lee K H, Lee J H, Kwon W H. Sufficient LMI conditions for H∞ output feedback stabilization of linear discrete-time systems [ J ]. IEEE Transactions on Automatic Control, 2006, 51 (4) : 675 - 680.
  • 2Dong J X, Yang G H. Robust static output feedback control for linear discrete-time systems with time-varying uncertainties [ J ]. Systems and Control Letters, 2008, 57 (2) : 121 - 131.
  • 3Du X, Yang G H. Improved LMI conditions for H∞ output feedback stabilization of linear discrete-time systems [ J ]. International Journal of Control Automation and Systems, 2010, 8(1): 163 -168.
  • 4Abbaszadeh M, Marquez H J. LMI optimization approach to robust H∞ observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems [ J ]. International Journal of Robust and Nonlinear Control, 2009: 19(3) : 313 -340.
  • 5Stipanovic D M, Siljak D D. Robust stability and stabilization of discrete-time nonlinear systems: the LMI approach [ J ]. International Journal of Control, 2001, 74 (9) : 873 - 879.
  • 6Ho D, Lu G P. Robust stabilization for a class of discretetime nonlinear systems via output feedback: the unified LMI approach [ J ]. International Journal of Control, 2003, 76(2) : 105 - 115.
  • 7Fu M, Xie L. The sector bound approach to quantized feedback control [ J ]. IEEE Transactions on Automatic Control, 2005, 50( 11): 1698- 1711.
  • 8Coutinho D F, Fu M, de Souza C E. Input and output quantized feedback linear systems [ J ]. IEEE Transactions on Automatic Control, 2010, 55 (3) : 761 - 766.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部