摘要
针对非线性离散时滞模糊系统,研究其不完全测量情形下的H∞滤波问题.假设非线性项满足扇形条件,并利用服从Bernoulli分布的随机变量来描述不完全测量.目的是设计H∞滤波器,使得滤波误差系统均方指数稳定且满足给定的干扰抑制水平.首先,基于模糊Lyapunov泛函得到了滤波误差系统均方指数稳定的时滞依赖充分条件.然后,给出了H∞滤波器的设计方法.H∞滤波器的参数可通过求解一组线性矩阵不等式得到.
In this paper,the H∞ filtering problem is considered for a class of nonlinear discrete time-delay systems with incomplete measurements,where the nonlinearities are assumed to satisfy sector conditions,and the incomplete measurements are described by a stochastic variable that obeys Bernoulli distribution.The aim is to design filters such that the filter error system is mean-square exponentially stable with a prescribed disturbance attenuation level.First,based on a fuzzy Lyapunov functional,delay-dependent sufficient conditions on the mean-square exponential stability of the filter error system are derived.Then,the H∞ filter design approach is proposed.The filter parameters can be obtained by solving a set of linear matrix inequalities(LMIs).
出处
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2011年第1期60-67,共8页
Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金
江苏省自然科学基金资助项目(BK2010275)
江苏省高校"青蓝工程"资助项目
南通市应用研究计划资助项目(K2009035)
关键词
离散模糊系统
时滞系统
不完全测量
H∞滤波
线性矩阵不等式
discrete-time fuzzy systems
time-delay systems
incomplete measurements
H∞ filtering
linear matrix inequality