期刊文献+

直观模糊赋范空间中双指标序列的收敛性(英文)

Convergence of double-indexed sequences in an intuitionistic fuzzy normed space
下载PDF
导出
摘要 目的研究直观模糊赋范空间中双指标序列的收敛性,证明直观模糊赋范空间中的加法、数乘及观模糊范数的连续性。方法定义直观模糊赋范空间中双指标序列的收敛性及有界性。结果证明直观模糊赋范空间中的加法、数乘及直观模糊范数关于双指标序列的连续性。结论本文结果说明了直观模糊赋范空间中的代数结构与拓扑结构是相容的。 Aim To discuss the convergence of double-indexed sequences in an intuitionistic fuzzy normed space(IFNS) and prove that the addition,scalar multiplication and intuitionistic fuzzy norm of double-indexed sequence in an IFNS are all statistically continuous.Methods By introducing the boundedness and convergence of double-indexed sequences in an IFNS,the aforesaid aim is discussed.Results The results are obtained that the addition,scalar multiplication and intuitionistic fuzzy norm of double-indexed sequence in an IFNS are all statistically continuous.Conclusion The result shows that the topological and algebraic structures in an IFNS are compatible.
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2011年第1期11-15,共5页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 Supported by the NNSF of China(No.10571113,10871224)
关键词 收敛性 双指标序列 连续性 直观模糊赋范空间 convergence double-indexed sequence continuity intuitionistic fuzzy normed space
  • 相关文献

参考文献17

  • 1SCHWEIZER B, SKLAR A. Statistical metric spaces[J]. Pacific J Math, 1960, 10(1): 314-334.
  • 2AMINI M, SAADATI R. Topics in fuzzy metric space[J]. Fuzzy Math, 2003, 4: 765-768.
  • 3AMINI M, SAADATI R. Some properties of Continuous t-norms and s-norms[J]. Pure Appl Math, 2004, 16: 157-164.
  • 4HU C. C structure of FTS, V: Fuzzy metric spaces[J].JFuzzyMath, 1995, :3; 711-721.
  • 5GEORGE A, VEERAMANI P. On some result of analysis for fuzzy metric spaces[J].Fuzzy Sets Syst, 1997, 90 (3) :365-368.
  • 6GREGORI V, ROMAGUERA S. Some properties of fuzzy metric spaces[J]. Fuzzy Sets Syst, 2000, 115 (3): 485-489.
  • 7GREGORI V, ROMAGUERA S. On completion of fuzzy metric spaces[J].Fuzzy Sets Syst, 2002, 130(3): 399- 404.
  • 8GREGORI V, ROMAGUERA S. Characterizing completable fuzzy metric spaces[J]. Fuzzy Sets Syst, 2004, 144 (3) : 411 420.
  • 9GREGORI V, ROMAGUERA S, VEERAMANI P. A note on intuitionistic fuzzy metric spaces [J]. Chaos, Sblitons and Fractals, 2006, 28(4): 902-905.
  • 10LOWEN R. Fuzzy set theory[M]. Dordrecht: Kluwer Academic Publishers, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部