期刊文献+

关于Smarandache三角形数的下部及上部数列 被引量:4

On inferior and superior partial sequences of the triangular numbers
下载PDF
导出
摘要 目的研究Smarandache三角形数及其数列的性质。方法利用初等方法和解析方法对其进行研究。结果研究了三角形数的分部序列的算术平均值及几何平均值的极限问题,获得了这些数列的渐近公式。结论发展了F.Smarandache教授在《Only Problems,Not Solution》一书(Xiquan Publishing House,1993)中涉及的相关研究工作。 Aim To study the properties of triangular numbers and their partial sequences in Only Problems,Not Solution,which was written by Professor F.Smarandache,a Romanian-American number theory expert and it was published by Xiquan Publishing House in 1993.Methods The elementary method and analytic method are adopted to discuss the aforesaid aim.Results By discussing the limit problem of the arithmetic mean and the geometric mean of several partial sequences of triangle numbers,the asymptotic formula of these sequences are obtained.Conclusion The relevant research work has been extended that F.Smarandache professor discussed in Only Problems,Not Solution.
作者 黄炜
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2011年第1期23-25,共3页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金项目(10671155 10871123) 陕西省自然科学基金项目(SJ08A28)
关键词 三角形数的上部序列 三角形数的下部序列 均值 渐近公式 superior partial sequence of triangular numbers inferior partial sequence of triangular numbers mean value asymptotic formula
  • 相关文献

参考文献5

二级参考文献16

  • 1易媛.关于三角形数补数及其渐近性质[J].商洛师范专科学校学报,2005,19(2):3-5. 被引量:20
  • 2Smarandaehe F. Only Problems'Not Solutions[M]. Chicago: Xiquan Publishing House, 1993.
  • 3Apostol T M. Introduction to Analytic Number Theory [M]. New York: Spring-Verlag, 1976. 106.
  • 4潘承洞 潘承彪.初等数论[M].北京:北京大学出版社,2003..
  • 5Smarandache F.Only Problems,not Solutions. Chicago:Xiquan Publ. House,1993.
  • 6Zhu Weiyi. On the k-power complement and k-power free number sequence. Smaran-dache Notions Journal,2004,14:66-69.
  • 7Yao Weili.On the k-power complement sequence.Research on Smarandache Problems in Number Theory.2004,Hexis,43-46.
  • 8Liu Hongyan and Lou Yuanbing. A note on the 29-th Smarandache's problem. Smaran-dache Notions Journal,2004,14:156-158.
  • 9Xu Zhefeng. On the additive k-power complements. Research on Smarandache Problems in NUmber Theory.2004,Hexis,13-16.
  • 10Tom M.Apostol. Introduction to Analytic Number Theory. Springer-Verlag:New York, 1976.

共引文献33

同被引文献16

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部