摘要
研究了一类非线性广义系统的状态估计问题。利用Taylor级数展开的方法将其转化为线性广义系统;再利用奇异值分解,对线性化后的系统进行降阶,转化为等价的正常线性系统;最后基于Kalman滤波估值理论,得到非线性广义系统的Kalman滤波器。通过数值仿真例子,验证了所提方法的有效性。
The state estimation problem is considered for a class of nonlinear singular systems.The linearized model was obtained by using Taylor's series expansion method;based on singular value decomposition,it was changed into a order-reduced equivalent normal system.By classical Kalman filtering theory,the state Kalman estimators for the nonlinear singular system was obtained.A numerical example shows the effectiveness of the proposed algorithm.
出处
《黑龙江大学工程学报》
2011年第1期83-87,共5页
Journal of Engineering of Heilongjiang University
基金
教育部科学技术研究重点项目(209038)
黑龙江省普通高校青年骨干支持计划项目(1155G43)