期刊文献+

矩阵方程AX=B的Hermitian-广义Hamiltonian矩阵解的迭代算法

The iteration method for the matrix equation AX=B over Hermitian generalized Hamiltonian matrices
下载PDF
导出
摘要 利用正交投影、Hermitian-广义Hamiltonian矩阵类的结构与性质及奇异值分解,讨论了矩阵方程AX=B的Hermitian-广义Hamiltonian矩阵解及其最佳逼近的迭代算法,证明了算法的收敛性,求出了相应的最佳逼近解,并给出了相应的算法步骤和数值例子. The iteration method is discussed for the matrix equation AX=B over Hermitian Generalized Hamiltonian Matrices,by the structure and characteristic properties of the Hermitian Generalized Hamiltonian Matrices and the Orthogonal projection Theorem and SVD,the iteration method is constructed and its convergence is proven and the convergence rate is obtained;As for this problem,the optimal approximation solution,a numerical algorithm and a numerical example are provided.
作者 杨斌 周富照
出处 《湖南文理学院学报(自然科学版)》 CAS 2011年第1期14-18,共5页 Journal of Hunan University of Arts and Science(Science and Technology)
关键词 正交投影 最佳逼近解 极小范数解 Hermitian-广义Hamiltonian矩阵 orthogonal projection optimal approximation least-norm solution Hermitian generalized Hamiltonian matrices
  • 相关文献

参考文献5

二级参考文献14

  • 1张磊,谢冬秀.一类逆特征值问题[J].数学物理学报(A辑),1993,13(1):94-99. 被引量:45
  • 2谢冬秀,张磊.一类反对称阵反问题的最小二乘解[J].工程数学学报,1993,10(4):25-34. 被引量:79
  • 3Mitra S K. A pair of simultaneous linear matrix equations A1XB1=C1, A2XB2=C2 and a matrix programming problem. Linear Algebra Appl, 1990, 131: 107-123
  • 4Boley D L, Golub G H. Inverse Eigenvalue Problems for Band Matrices Lecture Notes on Mathematics. Numerical Analysis. Berlin:Springer, 1977
  • 5戴华.用振动试验最优校正刚度、柔度和质量矩阵.振动工程学报,1988,1(2):18-27.
  • 6孙继广.实对称矩阵的两类逆特征值问题[J].计算数学.1988(03)
  • 7Ben-Israel A,Greville T N E.Generalized Inverse: Theory and Applications[]..1974
  • 8Boley D,Golub G H.A survey of matrix inverse eigenvalue problems[].Inverse Problems.1987
  • 9Li N,chu K W E.Designing the llopfield neural network via pole assignment[].Internat J Systems Sci.1994
  • 10Xie Dong-Xiu.Least-Squares solution for inverse eigenpair problem of nonnegative definite matrices[].Computers and Mathematics With Applications.2000

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部