期刊文献+

构造非线性偏微分方程高阶守恒律的直接法(英文) 被引量:1

Direct algorithms for constructing high-order conservation laws of nonlinear partial differential equations
下载PDF
导出
摘要 提出了构造非线性偏微分方程高阶守恒律的直接法并在Maple上实现,算法易操作,效率高.作为算法的应用,考虑了许多高维非线性偏微分方程,如Caudrey-Dodd-Gibbon-Sawada-Kotera方程、Boiti-Leon-Manna-Pempinelli方程和(2+1)-维Burgers方程以及It方程组,得到了它们的新的高阶守恒律.该算法还可用于构造更高维更高阶的守恒律,亦可推广至微分-差分方程(组). The direct algorithms for constructing the conservation laws of nonlinear differential equations are put forward and implemented in software Maple,which are easy for operation and high efficiency.As applications of the algorithms,some higher-dimensional nonlinear differential equations,such as Caudrey-Dodd-Gibbon-Sawada-Kotera equation,Boiti-Leon-Manna-Pempinelli equation and(2+1)-dimensional Burgers equation together with It equations are considered.As a result,some new high-order conservation laws of these equations have been obtained.The algorithms can be used to construct more higher order and dimension of conservation laws and be generalized to differential-difference equations.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2011年第2期304-308,共5页 Journal of Dalian University of Technology
基金 "973" The National Key Basic Research Project of China(2004CB318000) Fundamental Research Funds for the Central Universities and Science Foundation of Dalian University of Technology(No.SFDUT200808)~~
关键词 守恒律 Caudrey-Dodd-Gibbon-Sawada-Kotera方程 (2+1)-维Burgers方程 Boiti-Leon-Manna-Pempinelli方程 It方程组 conservation law Caudrey-Dodd-Gibbon-Sawada-Kotera equation (2+1)-dimensional Burgers equation Boiti-Leon-Manna-Pempinelli equation It equations
  • 相关文献

参考文献13

  • 1ABLOWITZ M J, CLARKSON P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering [M]. Cambridge:Cambridge University Press, 1991.
  • 2SANZ-SERNA J M. An explicit finite-difference scheme with exact conservation properties [ J ]. Journal of Computational Physics, 1982, 47:199-210.
  • 3HEREMAN W, COLAGROSSO M, SAYERS R, et al. Differential Equations with Symbolic Computation [ M]. Basel: Birkhauser Verlag, 2005.
  • 4ANDERSON I M. The Variational Bicomplex [ M]. Logan:Department of Mathematics and Statistics at Utah State University, 2004.
  • 5OLVER P J. Applications of Lie Groups to Differential Equations [M]. New York: Springer Verlag, 1993.
  • 6HEREMAN W, ADAMS P J, EKLUND H L, etal. Direct Methods and Symbolic Software for Conservation Laws of Nonlinear Equations , Advances in Nonlinear Waves and Symbolic Computation [ M]. New York:Nova Science Publishers, 2008.
  • 7IBRAGIMOV N H, KOLSRUD T. Lagrangian approach to evolution equations: Symmetries and conservation laws [J ]. Nonlinear Dynamics, 2004,36:9-40.
  • 8ANCO S C, BLUMAN G. Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications [ J ]. European Journal of Applied Mathematics, 2002, 13 : 545-566.
  • 9KARA A H, MAHOMED F M. Relationship between symmetries and conservation laws [ J ]. International Journal of Theoretical Physics, 2000, 39(1) :23-40.
  • 10WOLF T. A comparison of four approaches to the calculation of conservation laws [J ]. European Journal of Applied Mathematics, 2002, 13 : 129-152.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部