期刊文献+

FGH95粉末高温合金蠕变裂纹扩展有限元数值模拟研究 被引量:2

Finite Element Analysis of Creep Crack Growth in FGH95 Powder Metallurgy Superalloy
下载PDF
导出
摘要 对FGH95粉末高温合金标准CT试样在700℃下的蠕变裂纹扩展过程进行了有限元数值模拟研究。FGH95合金假设为弹性-蠕变体,蠕变变形采用Norton模型描述。蠕变裂纹扩展模拟时考虑了两种裂纹扩展速率,分别为3.25×10-2mm/h(快速裂纹扩展)和6.5×10-4mm/h(慢速裂纹扩展)。数值模拟结果表明:FGH95合金在700℃下发生蠕变裂纹扩展时,弹性变形引起的标准CT试样加载线位移Ve在总位移中起主导作用,蠕变变形引起的加载线位移Vc很小,加载线位移率比值■c/■远小于1,蠕变变形被限制在临近裂纹扩展路径的细长条带状区域内,裂纹尖端没有发生大范围蠕变变形。上述结果说明FGH95合金在700℃下为蠕变脆性材料,应力强度因子可作为FGH95合金高温疲劳裂纹扩展的有效驱动力参数。 Creep-crack growth in a standard compact-tension specimen has been at 700℃ simulated for an elastic/creeping material,FGH95 powder metallurgy superalloy using the finite element code.The Norton power-law model was used for describing the creep behavior of FGH95.In the simulation,two cases of crack growth rates,relatively fast(3.25×0-2mm/h) and slow(6.5×0-4mm/h),were considered.The numerical simulation result shows that,in the process of crack growth of FGH95 at 700℃,the load-line deflection due to elasticity(Ve) dominates the total deflection(V),with only small part due to creep(Vc).For both cases,the ratio of the load-line deflection rate due to creep(■) to the total deflection rate(■) was found to be well below 1.0,i.e.,■/■=1.0,and the creep zone was limited in a narrow banding area without large scale creep deformation near the crack tip.The result suggests that the crack growth behavior of FGH95 at 700℃ can be classified as creep-brittle,and stress intensity factor K will be the candidate parameter for crack growth driving force of FGH95 at elevated temperature.
出处 《长春理工大学学报(自然科学版)》 2011年第1期138-141,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 FGH95粉末高温合金 蠕变裂纹扩展 数值模拟 蠕变脆性 应力强度因子 FGH95 powder metallurgy superalloy creep crack growth numerical simulation creep brittle stress intensity factor
  • 相关文献

参考文献9

  • 1陶春虎 钟培道 王仁智 聂景旭.航空发动机转动部件的失效与预防[M].北京:国防工业出版社,2001.69-74.
  • 2Cowie W D,Stein T A.Damage Tolerant Design and Test Considerations in the Engine Structural Integrity Program[R] ,AIAA,1980.
  • 3Nicholas T.Fatigue crack growth modeling at elevated temperature using fracture mechanics[C].Elevated tempcrature crack growth,Winter Annual Meeting of ASME,1990:25-30.
  • 4ASTM-E-1457-00.Standard test method for measurement of creep crack growth rates in metals[S].
  • 5Saxena A,Hall D E,McDowell D L.Assessment of deflection rate partitioning for analyzing creep crack growth data[J].Engineering Fracture Mechanics,1999,62:111-122.
  • 6Zhao L G,Tong J.Byrne J.Finite element simulation of creep-crack growth in a nickel base superalloy[J].Engineering Fracture Mechanics,2001,68:1157-1170.
  • 7Zhao L G.Tong J.Crack growth in a new nickel-based supcralloy at elevated temperature:PartⅡ Finite element analysis of crack growth[J].Journal of Materials Science,2005.40:1229-1235.
  • 8中国航空工业第一集团公司发动机事业部,航空发动机设计用材料数据手册[M].航空工业出版社,2000.
  • 9中华人民共和国航空工业标准,HB 7623-1998,金属材料蠕变裂纹扩展速率试验方法[S].

共引文献14

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部