摘要
Tibetan area is the most active continental collision zone on earth. Several major earthquakes occurred around the boundaries of Tibetan plateau and caused massive damages and casualties. The dynamics of this area is not well understood due to the complex structure of Tibet and its surrounding area. In this study, a 3D global flow simulation with only viscous rheology is applied to studying the stress distribution in this area, and the interaction between Tibet and its surrounding areas is investigated. Finally, the possibility of combining regional modeling with global models is also discussed.
Tibetan area is the most active continental collision zone on earth. Several major earthquakes occurred around the boundaries of Tibetan plateau and caused massive damages and casualties. The dynamics of this area is not well understood due to the complex structure of Tibet and its surrounding area. In this study, a 3D global flow simulation with only viscous rheology is applied to studying the stress distribution in this area, and the interaction between Tibet and its surrounding areas is investigated. Finally, the possibility of combining regional modeling with global models is also discussed.
基金
supported by the National Natural Science Foundation of China (Nos. 90814014,40728004)
the National Science and Technology Project (No. SinoProbe-07)
the Visiting Senior Professorship from the Chinese Academy of Sciences
the CMG Program from the U.S. National Science Foundation