期刊文献+

Kaup-Boussinesq方程组的守恒律 被引量:1

Conservation laws of Kaup-Boussinesq systems
下载PDF
导出
摘要 根据齐次微分方程的等秩性质,利用Euler-Lagrange方程变分原理及同伦算子可构造出非线性PDE的多项式形式的守恒律.利用此方法对Kaup-Boussinesq(KB)方程组进行了研究,得到了它们的部分守恒律. Polynomial conservation laws of nonlinear PDF can be constructed using the variational principles of Euler-Lagrange equation and homotopy operators based on the rank properties of homogeneous differential equation.In the term of this methods,studied Kaup-Boussinesq(KB)systems,obtained partial conservation law.
作者 张盈
出处 《高师理科学刊》 2011年第2期33-35,50,共4页 Journal of Science of Teachers'College and University
关键词 Kaup-Boussinesq(KB)方程组 守恒密度 Euler算子 同伦算子 Kaup-Boussinesq(KB)system conserved density Euler operator homotopy operator
  • 相关文献

参考文献10

  • 1Naz R, Mahomed F M, Mason D P. Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics[J]. Appl Math comput, 2008 ( 205 ): 212-230.
  • 2G/Sktas 0, Hereman W. Symbolic computation of conserved densities for systems of nonlinear evolution equations[J]. J Symb Comput, 1997 (24): 591-621.
  • 3Hereman W, Adams P J, Eklund H L, et al. Direct Methods and Symbolic Software for Conservation Laws of Nonlinear Equations[C]// Yan Z. Advances of Nonlinear Waves and Symbolic Computation. New York: Nova Science Publishers, 2009:19-79.
  • 4Hereman W, Colagrosso M, Sayers R, et al. Continuous and Discrete Homotopy Operators and the Computation of Conservation Laws[C]//Wang D, Zheng Z. Differential Equations with Symbolic Computation. Basel: Birkh auser Verlag, 2005: 249-285.
  • 5HeremanW, Deconinck B, Poole L D. Continuous and discrete homotopy operators: A theoretical approach made concrete[J]. Math ComputSimul, 2007, 74 (4-5): 352-360.
  • 6Kaup D J. Finding eigenvalue problems for solving nonlinear evolution equations[J]. Progr Theoret Phys, 1975 ( 54 ): 72-78.
  • 7Guha P. Geodesic flow on extended bott-virasoro group and generalized two-compenent peakon type dual systems[J]. Rev Math Phys, 2008 (20): 1191-1200.
  • 8Smimov A O. Real finite gap regular solutions of the Kanp-Boussinesq equation[J]. Theoret Math Phys, 1986 ( 66 ): 19-31.
  • 9Borisov A B, Parlor M P, Zykov S A. Proliferation scheme for Kaup-Boussinesq system[J]. Physica D, 2001 ( 152/153 ): 104-109.
  • 10Zhou Jiangbo, Tian Lixin, Fan Xinghua. Solitary-wave solutions to a dual equation of the Kaup-Boussinesq system[J]. Nonlinear Analysis: Real World Applications, 2010, 11 ( 4 ) : 3229-3235.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部