期刊文献+

基于核直接判别分析和支持向量回归的WLAN室内定位算法 被引量:41

WLAN Indoor Positioning Algorithm Based on KDDA and SVR
下载PDF
导出
摘要 该文针对RSS信号的时变性降低WLAN室内定位精度的问题,提出了一种新的基于核直接判别分析和支持向量回归的定位算法。该算法利用核直接判别分析对原始RSS信号进行定位信息重组,去除冗余定位特征和噪声,提取最具判别力的定位特征,然后采用支持向量回归算法建立定位特征与物理位置的映射关系。实验结果表明,提出算法的定位精度明显高于传统定位算法,且大大降低了离线阶段数据采集的工作量。 The time-varying Received Signal Strength(RSS) drastically degrades the indoor positioning accuracy in Wireless Local Area Network(WLAN).A new positioning algorithm based on Kernel Direct Discriminant Analysis(KDDA) and Support Vector Regression(SVR) is proposed to resolve the problem in this paper.The proposed algorithm employs KDDA to reconstruct the localization information contained in the RSS signal.The most discriminative localization features are then extracted while the redundant localization features and noise are discarded by KDDA.The extracted localization features are taken as inputs to SVR learning machine and the mapping between localization features and physical locations is established.The experimental results show that the proposed algorithm obtains significant accuracy improvement while requiring a much smaller set of RSS training data than previous methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第4期896-901,共6页 Journal of Electronics & Information Technology
基金 国家863计划项目(2008AA12Z305)资助课题
关键词 无线局域网 室内定位 核直接判别分析 支持向量回归 Wireless Local Area Network(WLAN) Indoor positioning Kernel Direct Discriminant Analysis(KDDA) Support Vector Regression(SVR)
  • 相关文献

参考文献14

  • 1Munoz D, Bouchereau F, and Vargas C, et al.. Position Location Techniques and Applications[M]. Burlington, USA, Academic Press, 2009: 17-21.
  • 2Gu Y Y, Lo A, and Niemegeers I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32.
  • 3Mengual L, Marbn O, and Eibe S. Clustering-based location in wireless networks[J]. Expert Systems with Applications, 2010, 36(4): 7552-7561.
  • 4Brunato M and Battiti R. Statistical learning theory for location ngerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825-845.
  • 5Bahl P and Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system[C]. Proc. IEEE INFOCOM, Tel Aviv, Israel, 2000: 775-784.
  • 6Carlos K F, Inmaculada M J, and Alicia G C, et al.. Nonparametric model comparison and uncertainty evaluation for signal strength indoor location[J]. IEEE Transactions on Mobile Computing, 2009, 8(9): 1250-1264.
  • 7Chen K Y, Yang Q, and Yin J, et al.. Power-efficient access-point selection for indoor location estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(7): 877-888.
  • 8Kushki A, Plataniotis K, and Venetsanopoulos A. Intelligent dynamic radio tracking in indoor wireless local area networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(3): 405-419.
  • 9Fang S H, Lin T N, and Lin P. Location fingerprinting in a decorrelated space[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5): 685-691.
  • 10Lu J W, Plataniotis K N, and Venetsanopoulos A N. Face recognition using kernel direct discriminant analysis algorithms[J]. IEEE Transactions on Neural Networks, 2003, 14(1): 117-126.

同被引文献284

引证文献41

二级引证文献303

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部