期刊文献+

零空间保局判别本征脸 被引量:4

Null Space Locality Preserving Discriminant Intrinsicface
下载PDF
导出
摘要 本征脸从人脸自身的差别出发,将每一人脸分为脸部共同差别、个体类间差别和个体类内差别,取得了较好的识别效果。但是它未考虑人脸的流形结构,并且会遇到矩阵的奇异性,即小样本问题。针对这些问题,该文提出了零空间保局判别本征脸,该算法充分考虑了个体类内差别和个体类间差别,结合流形学习思想并借助于判别准则使得投影后个体类内之间保持一定的相似性而个体类间之间的区分度有所增加。通过在个体类内保局差异散度矩阵的零空间中求最优特征向量,避免了矩阵的奇异性问题,解决了小样本问题。在人脸识别上的实验验证了算法的正确性和有效性。 Based on the image differences,Intrinsicface is proposed,which divides the face image into three parts,common facial differences,intrapersonal differences and individual differences,and shows desirable performance.But it does not consider the manifold structure and suffers from the singular problem,which is also called Small Sample Size(SSS) problem.To solve these problems,Null Space Locality Preserving Discriminant Intrinsicface(NSLPDI) is proposed,which makes full use of intrapersonal differences and individual differences and employs the idea of manifold learning so that the similarity in the intra-class is preserved while the separability of samples from different classes is enlarged by discriminant criterion.The optimal feature vectors are extracted from the null space of intrapersonal locality preserving difference scatter matrix,which avoids the singularity and the SSS problem is solved.Experiments on face recognition demonstrate the correctness and effectiveness of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第4期962-966,共5页 Journal of Electronics & Information Technology
关键词 人脸识别 本征脸 保局算法 小样本问题 零空间 Face recognition Intrinsicface Locality preserving projection Small Sample Size(SSS) problem Null space
  • 相关文献

参考文献21

  • 1Turk M and Pentland A. Eigenfaces for recognition[J]. Cognitive Neurosci, 1991, 3(1): 71-86.
  • 2Belhumeur P N and Kriegman D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19: 711-720.
  • 3Tenenbaum J B, De Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.
  • 4Rowies S and Saul L. Nonliear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290: 2323-2326.
  • 5Belkin M and Niyogo P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 6He X, Niyogi P, and Han J. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 7He X F, Cai D, and Yan S C, et al.. Neighborhood preserving embedding [C]. Proc of the 10th IEEE International Conference on Computer Vision, Beijing, 2005: 12081213.
  • 8Yang J, Zhang D, and Yang J Y, et al.. Globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 650-664.
  • 9林玉娥,顾国昌,刘海波,沈晶.一种核正交鉴别保局投影算法[J].电子学报,2010,38(4):979-982. 被引量:4
  • 10Gao Quan-xue, Xu Hui, Li Yi-ying, and Xie De-yam Two dimensional supervised local similarity and diversity projections[J]. Pattern Recognition, 2010, 43(10): 3359-3363.

二级参考文献31

共引文献38

同被引文献51

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2Mukherjee A and Sengupta A.Estimating the probability density function of a nonstationary non-Gaussian noise[J].IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435.
  • 3Duda R O,Hart P E,and Stork D G.Pattern Classification[M].Wiley-Interscience Publication,2000:20-102.
  • 4Wang Zhi-min and Song Qing.Robust curve clustering based on a multivariate t-distribution model[J].IEEE Transactions on Neural Networks,2010,21(12):1976-1984.
  • 5John S T and Cristianini N.Kernel Methods for Pattern Analysis[M].Cambridge University Press,2004:289-325.
  • 6Zhang Yan and Zhang Tao.Kernel-based Bayesian face recognition[C].2009Fifth International Conference on Natural Computation,Tianjin,China,2009,7:568-572.
  • 7Ruiz A and Lopez-de Teruel P E.Nonlinear kernel-based statistical pattern analysis[J].IEEE Transactions on Neural Networks,2001,12(1):16-32.
  • 8Zhao Hai-tao,Yuen Pong-chi,and Kwok J T.A novel incremental principal component analysis and its application for face recognition[J].IEEE Transactions on Systems,Man,and Cybernetics,2006,36(4):873-886.
  • 9Xu Zeng-lin,Huang Kai-zhu,Zhu Jian-ke,et al.A novel kernel-based maximum a posteriori classification method[J].Neural Networks,2009,22(7):977-987.
  • 10Sch lkopf B,Smola A,and Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部