期刊文献+

基于小波树结构和迭代收缩的图像压缩感知算法研究 被引量:10

Image Compressed Sensing Algorithm Based on Wavelet Tree Structure and Iterative Shrinkage
下载PDF
导出
摘要 模型化压缩感知图像重构在标准压缩感知重构的基础上利用了小波树结构的先验知识,分别用贪婪树逼近和最优树逼近的方法求解重构优化问题。该文以模型化压缩感知重构中已有的小波树结构为基础,依据对大量自然图像小波系数关系的统计结果,提出了基于相邻系数、父系数与子系数之间统计相依关系的小波系数合理树结构,并结合小波系数合理树结构的思想,改进了普通迭代硬阈值压缩感知图像重构算法和基于最优树的模型化压缩感知图像重构算法。实验结果表明,该文算法能获得更高的图像重构质量。 Based on the standard compressed sensing,the model-based Compressed Sensing(CS) uses the tree structure priors,and solves the optimal reconstruction problem with two existing tree structure approximation which are greedy tree approximation and optimal tree approximation.Through numerous statistics test of wavelet relationship,a new tree structure which is named reasonable tree structure is proposed,which is based on the relationship between neighbor coefficients,parent coefficients and children coefficients.What is more,combining with the new reasonable tree structure,an improvement is made for the iterative hard threshold reconstruction algorithm and model-based compressed sensing reconstruction algorithm.Comparing with the iterative hard threshold algorithm and model-based compressed sensing algorithm,the proposed algorithm can achieve higher image reconstruction performance.
作者 练秋生 肖莹
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第4期967-971,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60772079 61071200) 河北省自然科学基金(F2010001294)资助课题
关键词 图像压缩感知 贪婪树结构 最优树结构 模型化压缩感知 迭代硬阈值重构 Image Compressed Sensing(CS) Greedy tree structure Optimal tree structure Model-based compressed sensing Iterative hard threshold reconstruction
  • 相关文献

参考文献17

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Chert S B, Donoho D L, and Sannders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
  • 4Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 5Blumensath T and Davies M E. Iterative hard thresholding for compressed sensing [J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
  • 6Mallat S and Zhang Z. Matching pursuits with timefrequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 7Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
  • 8Needell D and Vershynin D. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2009, 9(3): 317-334.
  • 9Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2008, 26(3): 301-321.
  • 10Lu Y M and Do M N. Sampling signals from a union of subspaces[J]. IEEE Signal Processing Magazine, 2008, 25(2): 41-47.

同被引文献75

  • 1马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 2Baraniuk R G, Volkan C, Marco T D, et al.Model-based compressive sensing[J].IEEE Transactions on Information Theory,2010,56(4) : 1982-2001.
  • 3Needell D, Vershynin R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pur- suit[J].Foundations of Computational Mathematics, 2009, 9(3) :317-334.
  • 4Donoho D L,Elad M,Temlyakov V.Stable recovery of sparse over-complete representations in the presence of noise[J].IEEE Transactions on Information Theory,2007, 14(7):185-195.
  • 5Aharon M,Elad M,Bruckstein A M.The K-SVD.an al- gorithm for designing of over-complete dictionaries for sparse representation[J].IEEE Transactions on Signal Pro- cessing, 2006,54 ( 6 ) : 4311-4322.
  • 6Hussain Z, Shawe-Taylor J,Hardoon D R.Design and generalization analysis of orthogonal matching pursuit algorithms[J].IEEE Transactions on Information Theory, 2011,57 (8) : 5326-5341.
  • 7Cai T T, Wang Lie.Orthogonal matching pursuit for sparse signal recovery with noise[J].IEEE Transactions on Information Theory,2011,57(7):4680-4688.
  • 8Ekanadham C, Tranchina D, Simoncelli E ERecovery of sparse translation-invariant signals with continuous ba- sis pursuit[J].IEEE Transactions on Information Theory, 2011,59(10) :4735-4744.
  • 9Li S H,Xue Y,carin L.Bayesian compressive sensing[J]. IEEE Trans on Signal Process,2008,57(6):2346-2356.
  • 10Candes E, Romberg J, Tao T. Stable Signal Recovery from Incomplete and Inaccurate Information[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1233.

引证文献10

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部