期刊文献+

基于EM算法的极大似然分布式量化估计融合新方法 被引量:6

New Method for Distributed and Quantitative Estimation Fusion of Multi-sensor Based on EM Algorithm
下载PDF
导出
摘要 该文针对水下目标探测中的多传感器分布式量化估计融合问题,建立了分布式量化估计融合模型,在考虑信道噪声且其统计特性不完全已知条件下,充分利用EM算法在观测数据缺失时参数估计的优越性,提出了一种基于期望极大化(EM)算法的极大似然分布式量化估计融合新方法。该方法将未知的水声信道噪声参数以及局部量化器量化概率建模为EM算法中二元高斯混合模型参数,利用极大似然估计方法的估计不变性得到目标参数的估计融合结果。仿真实验表明:该方法在局部传感器观测样本数目大于5000和信噪比大于6 dB时与已有理想信道条件下的估计方法性能相当,该方法为水下目标探测中分布式量化估计融合系统的工程实现提供了理论依据。 For multi-sensor distributed and quantitative estimation fusion problem of underwater target detection,a model of distributed and quantitative estimation fusion is established.The channel noise and its statistical property which is not fully known to fusion center is considered,The superiority of Expectation Maximization(EM) algorithm completely is used in parameter estimation problem when the observation data is missing.A new algorithm of distributed and quantitative estimation fusion is proposed based on EM algorithm.In this method,the unknown parameters of underwater acoustic channel noise and the quantization probability of local quantizer are modeled as the binary Gaussian mixture model parameters.Then,the invariance of the maximum likelihood estimation is used to get the result of the estimation fusion.Simulation results show that the estimation performance of the new algorithm is comparable to the methods which need ideal channel condition when the number of local sensors samples is larger than 5000 and the signal to noise ratio is higher than 6 dB.This new algorithm provides a theoretical basis for realizing the distributed and quantitative estimation fusion system of underwater target detection.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第4期977-981,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60972152)资助课题
关键词 水下目标探测 期望极大化(EM)算法 估计融合 极大似然 Underwater target detection Expectation Maximization(EM) algorithm Estimation fusion Maximum Likelihood(ML)
  • 相关文献

参考文献12

  • 1Fang Jun and Li Hong-bin. Distributed estimation of GaussMavkov random fields with one-bit quantized data[J]. IEEE Signal Processing Letters, 2010, 17(5): 449-452.
  • 2Chen Hao and Varshney P K. Performance limit for distributed estimation systems with identical one-bit quantizers[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 466-471.
  • 3Ribeiro A and Giannakis G. Bandwidth-constrained distributed estimation for wireless sensor networks--part II: unknown probability density function [J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2784-2796.
  • 4Wu T and Cheng Q. Distributed estimation over fading channels using one-bit quantization [C]. Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008: 1968-1972.
  • 5Ramanan S and Walsh J M. Distributed estimation of channel gains in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3097-3107.
  • 6Senol H and Tepedelenlioglu C. Performance of distributed estimation over unknown parallel fading channels [J]. IEEE Transactions on Signal Processing, 2008, 56(12): 6057-6068.
  • 7Arindam k. das mehran mesbahi. Distributed linear parameter estimation over wireless sensor networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1293-1305.
  • 8Cattivelli F S and Sayed A H. Diffusion LMS strategies for distributed estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1035-1048.
  • 9Song En-bin, Zhu Yun-min, Zhou Jie, and You Zhi-sheng. Minimum variance in biased estimation with singular fisher information matrix[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 376-381.
  • 10Ribeiro A and Giannakis G B. Bandwidth-constrained distributed estimation for wireless sensor networks--part I: Gaussian case [J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1131-1143.

同被引文献50

  • 1陈小惠,陈蓓玉,郑子扬.分布式水下多传感器多目标模糊跟踪融合方法[J].中国造船,2006,47(3):77-83. 被引量:4
  • 2李燕君,王智,孙优贤.资源受限的无线传感器网络基于衰减信道的决策融合[J].软件学报,2007,18(5):1130-1137. 被引量:19
  • 3Akyildiz I F,Su W,Sankarasubramaniam Y. Wireless sensor networks:a survey[J].Computer Networks,2002,(04):393-422.
  • 4Munavalli S C,Pissinou N,Lagos L E. Structural damage detection of nuclear reactor sites using sensor networks[A].Baltimore,MD,USA,2013.1-4.
  • 5Barroca N,Borges L M,Velez F J. Wireless sensor networks for temperature and humidity monitoring within concrete structures[J].Construction and Building Materials,2013.1156-1166.
  • 6Bal M,Shen W,Ghenniwa H. Collaborative signal and information processing in wireless sensor networks:a review[A].San Antonio,TX,2009.3151-3156.
  • 7Chair Z,Varshney P. Optimal data fusion in multiple sensor detection systems[J].IEEE Transactions on Aerospace and Electronic Systems,1986,(01):98-101.
  • 8Ahmadi H R,Vosoughi A. Distributed detection with adaptive topology and nonideal communication channels[J].IEEE Transactions on Signal Processing,2011,(06):2857-2874.
  • 9Niu R,Varshney K. Performance analysis of distributed detection in a random sensor field[J].IEEE Transactions on Signal Processing,2008,(01):339-349.
  • 10Park J,Shevlyakov G,Kim K. Distributed detection and fusion of weak signals in fading channels with non-gaussian noises[J].IEEE Communications Letters,2012,(02):220-223.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部