期刊文献+

基于LIBSVM的数控机床热误差建模研究 被引量:2

Foundation of thermal error model for NC machine tool based on LIBSVM
下载PDF
导出
摘要 通过建立数控机床热误差补偿的数学模型是实现机床热误差修正和提高机床精度的有效措施。本文以CL-20A数控车床主轴热变形为实验对象,在大量实验数据的基础上,利用逐步回归分析法找出机床温度敏感点,并采用基于MATLAB平台的支持向量机算法来建立车床主轴热误差数学模型。实验结果表明,所建立的模型能精确把握机床主轴热变形的规律和趋势,对于预测机床主轴热变形,实现实时热补偿具有实用价值。
出处 《制造业自动化》 北大核心 2011年第8期97-100,共4页 Manufacturing Automation
基金 "高档数控机床与基础制造装备"科技重大专项子课题:高速精密数控机床热误差补偿技术研究(2009ZX04014-023-02)
  • 相关文献

参考文献9

  • 1J.G. Yang, Y.Q. Ren, Z.C. Du. An application of realtime error compensation on an NC twin-spindle lathe [J]. Journal of Materials Processing Technology 129, 2002: 474-479.
  • 2Hong Yang, Jun Ni. Dynamic Modeling for Machine Tool Thermal Error Compensation [J]. Journal of ManufacturingScience and Engineering, 2003, 125:246-254.
  • 3J.G. Yang, Y.Q. Ren, G.L. Liu, H.T. Zhao, X.L. Dou, W.Z. Chen, S.W. He. Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center [J].Int J Adv Manuf Technol (2005) 26: 814-818.
  • 4R. Ramesh, M.A. Mannan, A.N. Poo. Error compensation in machine tools-a review Part II: thermal errors [J]. International Journal of Machine Tools & Manufacture 40 2000: 1257-1284.
  • 5傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 6林伟青,傅建中,陈子辰,许亚洲.数控机床热误差的动态自适应加权最小二乘支持矢量机建模方法[J].机械工程学报,2009,45(3):178-182. 被引量:44
  • 7Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing [A].10th Conference on Neural Information Processing Systems [C],Denver, Colorado, 1996:281-287.
  • 8郭辉,刘贺平,王玲.最小二乘支持向量机参数选择方法及其应用研究[J].系统仿真学报,2006,18(7):2033-2036. 被引量:103
  • 9李洋,郁磊等.MATLAB神经网络30个案例分析[M].北京:北京航空航天火学,2010:112-141.

二级参考文献25

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 3RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-A review Part II:thermal errors [J]. International Journal of Machine Tools and Manufacture, 2000,40(9): 1257-1284.
  • 4CHEN Jeng-shyong. Computer-aided accuracy enhancement for multi-axis CNC machine tool [J]. International Journal of Machine Tools and Manufacture,1995,35(4): 593-605.
  • 5TAKAGI Tomohiro,SUGENO Michio. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on Systems,Man and Cybernetics , 1985,15(1):116-132.
  • 6VAPNIK V. Statistical learning theory[M]. New York: John Wiley, 1998.
  • 7SUYKENS J A K, VAN GESTEL T, DE BREBANTER J, et al. Least squares support vector machines[M]. Singapore: World Scientific Pub. Co., 2002.
  • 8SUYKENS J A K. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1): 85-105.
  • 9YANG S S, LU W C, CHEN N Y, et al. Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure, 2005, 719(13): 119-127.
  • 10Vapnik V N.Statistical learning theory[M].New York:1995.

共引文献175

同被引文献39

  • 1刘莉,辛振祥.配方优化设计方法简介[J].橡塑技术与装备,2004,30(10):8-12. 被引量:11
  • 2王红军,徐小力.支持向量机在设备故障诊断方面的应用研究概述[J].机械设计与制造,2005(9):157-159. 被引量:11
  • 3王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504. 被引量:40
  • 4VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5DUZZ,FU H G,FU H F,et al. A study of ceramic-lined com- pound copper pine produced by SHS-centrifugal casting [J]. Materi- al Letters, 2005, 59:1 853-1 858.
  • 6KHANN M, KSANTINI R, AHMAD I S, et al. A novel SVM + NDA model for classification with an application to face recognition [J]. Pattern Recognition, 2012, 45 : 66-79.
  • 7SUDHEE C H, ANAND N, PANIGRAHI B K, et al. Stream flow forecasting by SVM with quantum behaved particle swarm optimization [J]. Neurocomputing, 2013, 101 : 18-23.
  • 8THEODOROS E, MASSIMILEANO P, TOMASO P. Regutari- zation networks and support vector machines [J]. Advances in Computational Mathematics,2000(17) : 1-50.
  • 9SMOLA M, SCHO LKOPF A, MULLER P. The connection be- tween regularization operators and support vector kernels [J]. Neural Networks, 1998(11): 637-649.
  • 10PEREZ-CRUZ F, CAMPS G, SORIA E, et al. Multi-dimensional Function Approximation and Regression Estimation[A]. //Pro- ceeding of the ICANN 2002[C], Berlin: Springer, 2002.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部