期刊文献+

2-上循环交叉积

2-Cocycle crossed products
原文传递
导出
摘要 利用von Neumann代数M和带有正规的2-上循环μ的离散群G,定义了2-上循环交叉积,推广了经典的离散交叉积,并证明了2-上循环交叉积具有结合律. A 2-cocycle crossed product is defined in this paper given avon Neumann algebra ~4 and a discrete group G with a normalized 2-cocycle μ on it, which generalizes the classical discrete crossed product. Also, the associative law of the 2-cocycle crossed product is shown in this paper.
作者 赵建伟
出处 《中国科学:数学》 CSCD 北大核心 2011年第3期271-278,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10926118) 浙江省自然科学基金(批准号:Y6110117)资助项目
关键词 yon NEUMANN 代数2-上循环交叉积 结合律 von Neumann algebra, 2-cocycle crossed product, associative law
  • 相关文献

参考文献14

  • 1Murray F J, von Neumann J. On rings of operators. Ann Math, 1936, 37:116-229.
  • 2Murray F J, von Neumann J. On rings of operators IV. Ann Math, 1943, 44:716-808.
  • 3Voiculescu D, Dykema K, Nica A. Free Random Variable. CRM Monogr Ser, vol. 1. Providence, RI: Amer Math Soc, 1992.
  • 4Popa S. On Ozawa's property for free group factors. Int Math Res Notices, 2007, doi:10.1093/imrn/rnm036.
  • 5Vaes S. An inner amenable group whose von Neumann algebra does not have property Gamma. arXiv: 0909.1485, 2009.
  • 6Ioana A, Popa S, Vaes S. A class of superrigid group yon Neumann algebras, arXiv: 1007.1412vl, 2010.
  • 7Connes A, Jones V F R. Property (T) for von Neumann algebras. Bull London Math Soc, 1985, 17:5742.
  • 8Nicoara R, Popa S, Sasyk R. On II1 factors arising from 2-cocycles of w-rigid groups. J Funct Anal, 2007, 242:230-246.
  • 9Turumaru T. Crossed products of operator algebras. Tohoku Math J, 1958, 10:335-365.
  • 10Nakamura M, Takeda Z. On some elementary properties of the crossed product of von Neumann algebras. Proc Japan Acad Ser A Math Sci, 1958, 34:489-494.

二级参考文献36

  • 1Woronowicz S L. Twisted SU(2) group, an example of a non-commutative differential calculus. Publ RIMS, Kyoto, 1987, 23:117-181.
  • 2Lance E C. An explicit description of the fundamental unitary for SUp (2). Commun Math Phys, 1994,164:1-15.
  • 3Woronowicz S L. Quantum SU(2) and E(2) groups, contraction procedure. Commun Math Phys, 1992,149:635-652.
  • 4Tomiyama J. Invitation to C^*-Algebras and Topological Dynamics. Singapore: World Scientific, 1987.
  • 5Fillmore A. A User's Guide to Oerator Algebras. Canadian Mathematical Society Series of Monographs and Advanced Texts (A Wiley-Interscience Publication). New York: John Wiley & Sons. Inc. 1996.
  • 6Van Daele A. The Haar measure on a Woronowicz C^*-algebra. Proc Amer Math Soc, 1995, 123(10):3125-3128.
  • 7Podles P. Symmetries of quantum spaces, subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Commun Math Phys, 1995, 170:1-20.
  • 8Wang Shuzhou. Free products of Woronowicz C^*-algebras. Commun Math Phys, 1995, 167:671-692.
  • 9Wang Shuzhou. Tensor products and crossed products of Woronowicz C^*-algebras. Proc London Math Soc, 1995, 71(3): 695-720.
  • 10Sunder V S. An Invitation to von Neumann Algebras. New York: Springer-Verlag, World Publishing Corporation, 1987.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部