期刊文献+

效应代数的表示 被引量:8

Representations of effect algebras
原文传递
导出
摘要 本文讨论了抽象效应代数的表示问题.对于一个抽象效应代数(E,⊕,0,1),如果存在一个Hilbert空间H和一个单态射φ:E→E(H),那么称E为可表示的且称(φ,H)是E的一个表示,其中ε(H)表示H上所有正压缩算子构成的效应代数.给出了一些可表示的和不可表示的效应代数的例子,证明了非空集X上的任一模糊集系统F和Boolean代数BX都是可表示的效应代数. This note is devoted to introducing and discussing the representations of abstract effect algebras. An abstract effect algebra (E, , 0, 1) is said to be representable if there exists a Hilbert space H and a monomorphism φ:E→ε(H), where ε(H) denotes the effect algebra consisting of all positive contractions on H. Such a pair φ,H is called a representation of (E, , 0, 1). Many examples of effect algebras are given, some of which are representable and the others are not. It is also proved that every fuzzy set system 5r and Boolean algebra Bx on a nonempty set X are representable effect algebras.
出处 《中国科学:数学》 CSCD 北大核心 2011年第3期279-286,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10571113 10871224) 陕西省自然科学研究计划(批准号:2009JM1011) 中央高校基本科研业务费(批准号:GK201002006)资助项目
关键词 表示 效应代数 Hilbert空间效应代数 representation, effect algebra, Hilbert space effect algebra
  • 相关文献

参考文献3

二级参考文献43

  • 1[1]Moreland,T.,Gudder,S.,Infima of Hilbert space effects,Linear Algebra and Its Applications,1999,286:1-17.
  • 2[2]Kadison,R.,Order properties of bounded self-adjoint operators,Proc.Amer.Math.Soc.,1951,34:505-510.
  • 3[3]Gheondea,A.,Gudder,S.,Sequential product of quantum effect,Proc.Amer.Math.Soc.,2004,132:503-512.
  • 4[4]Gudder,S.,Lattice properties of quantum effects,J.Math.Phys.,1996,37:2637-2642.
  • 5[5]Lajos Molnár,Preservers on Hilbert space effects,Linear Algebra and Its Applications,2003,370:287-300.
  • 6[6]Yang,J.,A note on commutativity up to a factor of bounded operators,Proc.Amer.Math.Soc.,2004,132:1713-1720.
  • 7[7]Du,H.,Another generalization of Anderson's theorem,Proc.Amer.Math.Soc.,1995,123:2709 2714.
  • 8[8]Ando,T.,Problem of infimum in the positive cone,Analytic and Geometric Inequalities and Applications,1999,478:1-12.
  • 9[9]Conway,J.,A Course in Functional Analysis,New Youk:Spring-Verlag,1990.
  • 10Kadison R.Order properties of bounded self-adjoint operators.Proc Amer Math Soc,1951,34:505~510.

共引文献16

同被引文献41

  • 1DU Hongke DENG Chunyuan LI Qihui.On the infimum problem of Hilbert space effects[J].Science China Mathematics,2006,49(4):545-556. 被引量:16
  • 2杜鸿科,邓春源,李启慧.量子效应的下确界问题[J].中国科学(A辑),2006,36(3):320-332. 被引量:2
  • 3王璐,周湘南.效应代数的素滤子,同余关系与商[J].数学理论与应用,2007,27(1):78-81. 被引量:3
  • 4BENNETT M K, FOULIS D J. Interval and scale effect algebras[J]. Advances in Applied Mathematics, 1997,91 (19) :200-215.
  • 5GUDDER S,GREECHIE R. Uniqueness and order in sequential effect algebras [J]. International Journal of Theoretical Physics, 2005,44(7) : 755-770.
  • 6GUDDER S, GREECHIE R. Sequential products on effect algebras [J]. Reports on Mathematical Physics, 2002,49 (1) : 87-111.
  • 7MA Zhi-hao. Note on ideals of effect algebras [J]. Information Sciences, 2009,179 (5) : 505-507.
  • 8DVURECENSKIJ A, PULMANNOVA S. New trends in quantum structures [M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 9GUDDER S, PULMANNOVA S. Representation theorem for convex effect algebras [J]. Coment Math Univ, 1998,39 (4): 645-659.
  • 10RAVINDRAN K. On a structure theory of effect algebras [D]. Manhattan:Kansas State University,1996.

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部