期刊文献+

微结构硫化物光纤中中红外超连续谱的产生 被引量:4

MidInfrared Supercontinuum Generation from Microstructured Chalcogenide Fibers
原文传递
导出
摘要 采用微结构硫化物光纤,以非线性薛定谔方程(NLSE)为理论模型,利用分步傅里叶计算方法,研究了输入脉冲的中心频率和脉宽对中红外超连续谱(SC)的影响。采用的微结构硫化物光纤具有较高的非线性效应和两个零色散波长(ZDW),且第二个零色散波在中红外波段,有利于中红外超连续谱的产生。通过仿真发现,输入脉冲的中心频率和脉宽对连续谱的产生都有很大影响。数值仿真中,输入具有不同频率和脉宽的脉冲,输入波长接近零色散点时较远离色散点时产生的中红外超连续谱要宽。而且,在保持峰值功率不变的情况下,脉宽对频谱展宽程度没有影响,但是较短脉冲产生的中红外超连续谱更为平坦。 By using microstructured chalcogenide fibers,splitstep Fourier algorithm and nonlinear Schrdinger equation(NLSE),effects of centre frequency and pulse width of seed pulse on midinfrared supercontinuum(SC) generation are studied.The microstructured chalcogenide fibers used here have high nonlinear effect and two zero dispersion wavelengths(ZDW).The second ZDW is in midinfrared,which is helpful to midinfrared SC generation.There are marked effects of centre frequency and pulse width of seed pulse on SC generation.In numerical stimulation,seed pulses have different frequencies and durations.Midinfrared SC generation whose input wavelength is near ZDWs is wider than those far from ZDWs.When keeping peak power invariable,frequency spectrum broadened by pulse width is steady,but the shorter pulse can generate smoother midinfrared SC.
出处 《激光与光电子学进展》 CSCD 北大核心 2011年第4期67-71,共5页 Laser & Optoelectronics Progress
基金 湖南省自然科学基金重点项目(10JJ2047)资助课题
关键词 非线性光学 非线性薛定谔方程 分步傅里叶算法 中红外超连续谱 微结构硫化物光纤 nonlinear optics nonlinear Schrdinger equation splitstep Fourier algorithm midinfrared super continuum chalcogenide fiber
  • 相关文献

参考文献17

  • 1R. Holzwarth, T. Udem, T. W. Hansch et al.. Optical frequency synthesizer for precision spectroscopy [J]. Phys. Rev.Lett. , 2000, 85(11) : 2264-2267.
  • 2Chenan Xia. Mid-Infrared Supercontinuum Laser System and its Biomedical Applications [D]. Michigan: University ofMichigan, 2009. 104-108.
  • 3M. N. Islam, G. Sucha, I. Bar-Josepha al.. Broad bandwidths from frequency-shifting solitons in fibers [J]. Opt. Lett. ,1989, 14(7): 370-372.
  • 4T. Morioka, K. Mori, S. Kawanishi et al.. Multi-WDM-channel, GBit/s pulse generation from a single laser sourceutilizing LD-pumped supercontinuum in optical fibers [J]. IEEE Photon. Technol. Lett. , 1994, 6(3): 365-368.
  • 5S. C. Buchter, B. Andersen, M. D. Nielsen et al.. Nanosecond supercontinuum generation at the m] level [C].SPIEEuropean Syrup. on Optics/Photonics in Security and De/ence, 2004, 5620:22-27.
  • 6Jonathan C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851.
  • 7J. C. Knight, T. A. Birks, P. St. J. Russellet al.. All-silicasin91e-mode optical fiber with photonic crystal cladding [J]. Opt. Lett. , 1996, 21(19): 1547-1549.
  • 8Jonathan H. V. Price, Tanya M. Monro, H. Ebenclorff-Heidepriem et al.. Mid-IR supercontinuum generation fromnonsilica microstructured optical fibers[J]. IEEE J. Sel. Top. Quantum Electron. , 2007, 13(3) : 738-749.
  • 9T. M. Monro, K. M. Kiang, J. H. Lee et al.. High nonlinearity extruded single-mode holey optical fibers[C]. Opt.Fiber Commun. Conf. Post deadline paper FA1, Anaheim, 2002:1-3.
  • 10Karen Marie Hilligse, Thomas Vestergaard Andersen, Henrik Paulsen et al.. Supercontinuum generation in a photoniccrystal fiber with two zero dispersion wavelengths [J]. Opt. Express, 2004, 12(6):1045-1054.

同被引文献79

  • 1Ranka J K, Windeler R S, Stentz A J, et al. Visible continuum generation in air-silica microstructure optical fibers with anomalous disper- sion at 800 nm[J]. OptLett,2000,25: 25-27.
  • 2Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[J]. Physical Review Letters, 2001,87:203901.
  • 3Herrmann J, Griebner U, Zhavoronkov N, et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J]. Physical Review Letters,2002, 88.. 173901.
  • 4Qin Guanshi, Yan Xin, Kito C, et al. Supercontinuum generation spanning over three octaves from UV to 3.85 #m in a fluoride fiber[J] Optics Letters, 2009, 34 : 2015-2017.
  • 5Qin Guanshi, Yan Xin, Kito C, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6,28 μm in a fluoride fiber[J]. Ap plied Physics Letter, 2009, 95: 161103.
  • 6Agrawal P G, Nonlinear fiber optics[M]. 3rd ed. Academic press:New York, 2001.
  • 7R R Alfano, S L Shapiro. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24(11): 592.
  • 8J G Daly. Mid-infrared laser applications[C]. Optics, Electro-Optics, and Laser Applications in Science and Engineering, 1991: 94-99.
  • 9R W Waynant, I K Ilev, I Gannot. Mid - infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1780): 635-644.
  • 10P Werle, F Slemr, K Maurer, et al.. Near-and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering, 2002, 37(2): 101-114.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部