期刊文献+

APSO-WLSSVM算法在水质预测中的应用研究 被引量:3

Research on Water Quality Prediction Based on APSO-WLSSVM
下载PDF
导出
摘要 针对参数选择是影响加权最小二乘支持向量机水质预测效果的关键,给出了基于自适应粒子群优化算法参数优选的WLSSVM回归预测的建模过程,以大伙房水库为例,预测了库区水质主要影响因素,并与未优选的WLSSVM预测结果进行对比。结果表明,该方法参数寻优更可靠、快速,预测精度高。 Getting better parameters values is one of the key factors for weighted least squares support vector machine(WLSSVM),which affect the water quality prediction.In this paper,adaptive particle swarm optimization algorithm based on weighted least squares support vector machine regression modeling process is studied.Taking Dahuofang Reservoir for an example,the main factors influence of water quality in reservoir area is predicted.Compared with APSO-WLSSVM and non-optimized WLSSVM,the results show that the proposed method is more reliable,fast and has good prediction accuracy.
出处 《水电能源科学》 北大核心 2011年第4期38-40,共3页 Water Resources and Power
关键词 自适应粒子群算法 加权最小二乘支持向量机 参数寻优 水质预测 大伙房水库 adaptive particle swarm optimization(APSO) WLSSVM parameter optimization water quality prediction Dahuofang Reservoir
  • 相关文献

参考文献9

二级参考文献57

共引文献98

同被引文献40

  • 1ZOU Zhi-hong YUN Yi SUN Jing-nan.Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J].Journal of Environmental Sciences,2006,18(5):1020-1023. 被引量:217
  • 2苗成林,周宏.基于灰色模型的水质预测[J].中国农村水利水电,2007(2):126-128. 被引量:17
  • 3Jesus Abaurrea, Jesus Asin, Ana C, et al. Trend Analysis of Water Quality Series Based on Regression Models with Corre- lated Errors[J]. Journal of Hydrology, 2011,11(400):341-352.
  • 4All Erturk, Melike Gurel, Alpaslan Ekdal, et al. Water Quality Assessment and Meta Model Development in Melen Watershed- Turkey[J]. Journal of Environment Management, 2010,7 (91 ):1526-1545.
  • 5Honggui Han,Qili Chen,Junfei Qiao. An Efficient Self-organi- zing RBF Neural Network for Water Quality[J]. Neural Net- works, 2011,7(24) : 717-725.
  • 6Sundarambal Palani, Shie-Yui Liong, Pavel Tkalich. An ANN Application for Water Quality Forecasting[J].Marine Pollution Bulletin, 2008,9(56) ; 1586-1597.
  • 7Jean Louis Pinault, lor G. Dubus. Stationary and Non-stationa- ry Autoregressive Processes with External Inputs for Predic- ting Trends in Water Quality[J]. Journal of Contaminant Hy- drology,2008,8(100) :22-29.
  • 8Yue Liao,Jianyu Xu,Wenjing Wang. A Method of Water Quality Assessment Based on Biomonitoring and Multiclass Support Vector Machine[J]. Procedia Environment, 2011, A(10) : 451- 457.
  • 9Kunwar P. Singh,Nikta Bassant, Shikha Gupta. Support Vec- tor Machines in Water Quality Management [J].Analysisi Chimiean Acta,2011,10(2) : 152-162.
  • 10Guohua Tan,Jianzhuo Yan, Chen Gao, et al. Prediction Water Quality Times Series Data Based on Least Squares Support Vector[J]. Proeedia Enihineering, 2012,31 : 1194-1199.

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部