期刊文献+

基于分类学习字典全局稀疏表示模型的图像修复算法研究 被引量:4

Image Inpainting Based on Non-Local Sparsity Representation with Muti-Region Learning Dictionary
原文传递
导出
摘要 基于稀疏重构的图像修复依赖于图像全局自相似性信息的利用和稀疏分解字典的选择,为此提出了基于分类学习字典全局稀疏表示模型的图像修复思路.该算法首先将图像未丢失信息聚类为具有相似几何结构的多个子区域,并分别对各个子区域用K-SVD字典学习方法得到与各子区域结构特征相适应的学习字典.然后根据图像自相似性特点构建能够描述图像块空间组织结构关系的全局稀疏最大期望值表示模型,迭代地使用该模型交替更新图像块的组织结构关系和损坏图像的估计直到修复结果趋于稳定.实验结果表明,方法对于图像的纹理细节、结构信息都能起到好的修复作用. The performance of Sparse reconstruction for inpainting is severely dependent on the effective selection of sparse dictionary and the exploitation of self-similarity in image. For those reason, non-local sparse representation based inpainting with multi-region learning dictionary is proposed in this paper. Firstly, the available region of damaged image was clustered into regions of similar geometric structure which convey same local structural feature. The algorithm represents every region by a learning dictionary with K-SVD algorithm. The learned dictionary is then employed to recover the damaged pixel by using an expectation-maximization non-local sparse representation modal which exploits the selfsimilarity dependency in natural image to reveal the organizational structure between image blocks. Finally, the algorithm alternate the process of recovering damaged image pixel and revealing the inner organization in natural image by iterated employment of the non-local sparse representation modal until a convergent result is obtained. Experiments on texture images, structure images and real images demonstrate that the proposed algorithm is efficient and can achieve better performance.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第7期98-108,共11页 Mathematics in Practice and Theory
基金 河北省自然科学基金(F2008000891) 河北省自然科学基金(72010001297) 中国博士后自然科学基金(20080440124) 第二批中国博士后基金特别资助(200902356) 国家自然科学基金(61071199)
关键词 图像修复 稀疏表示 学习字典 最大期望值 image inpainting sparse representation learned dictionary expectation maximization
  • 相关文献

参考文献16

  • 1Carlos Brito-Loeza.MULTIGRID METHOD FOR A MODIFIED CURVATURE DRIVEN DIFFUSION MODEL FOR IMAGE INPAINTING[J].Journal of Computational Mathematics,2008,26(6):856-875. 被引量:3
  • 2Kuijper Arian.Geometrical PDEs based on second-order derivatives of gauge coordinates in image processing[J]. Image and Vision Computing, 2009,27(8): 1023-1034.
  • 3Jiang Lingling, Feng Xiangchu, Yin Haiqing. Structure and texture image inpainting using sparse representations and an iterative curvelet thresholding approach[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2008, 6(5): 691-705.
  • 4Criminisi A, Perez P, Toyama K. Region filling and object removal by exemplar-based image in- painting [J]. IEEE Trans. on Image Processing, 2004, 13 (9): 1200-1212.
  • 5Onur G. Guleryuzl. Nonlinear approximation based image recovery using adaptive sparse recon- structions and iterated de-noising-Part I: Theory[J]. IEEE Transactions on image processing, 2006, 15(3): 539-554.
  • 6Onur G Guleryuz. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated de-noising-Part II: Adaptive algorithms [J]. IEEE Trans. on image processing, 2006, 15(3): 555-571.
  • 7Raymond H Chan, Wen You-Wei, Yip Andy M. A fast optimization transfer algorithm for image inpainting in wavelet domains[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1467-1476.
  • 8Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3D transform-domain collaborative filtering[J]. IEEE Trans on Image Processing, 2007, 16(8): 2080-2095.
  • 9Julia A Dobrosotskaya, CA A Los Angeles. wavelet-laplace variational technique for image decon- volution and inpainting[J]. IEEE Transactions on Image Processing, 2008, 17(5): 657-663.
  • 10Peyre Gabriel. Sparse modeling of textures[J]. Journal of Mathematical Imaging and Vision, 2009, 34(1): 17-31.

二级参考文献27

  • 1T.F. Chan, S.H. Kang, and J.-H. Shen, Euler's elastica and curvature based inpaintings, J. Appl. Math., 63:2 (2002), 564-592.
  • 2T.F. Chan and J.-H. Shen, Non-texture inpaintings by curvature-driven diffusions, J. Vis. Commun. Image R., 12:4 (2001), 436-449.
  • 3T.F. Chan and J.-H. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62:3 (2002), 1019-1043.
  • 4T.F. Chan and J.-H. Shen, Image Processing and Analysis Variational, PDE, wavelet, and stochastic methods, SIAM, (2005).
  • 5T.F. Chan and J.-H. Shen, Variational image inpainting, Commun. Pur. Appl. Math., 58:5 (2005), 579-619.
  • 6T.F. Chan, J.-H. Shen, and H.-M. Zhou, Total variation wavelet inpainting, J. Math. Imaging Vis., 25:1 (2006), 107-125.
  • 7K. Chen and J. Savage, An accelerated algebraic multigrid algorithm for total variation denoising, BIT Numer. Math., 47:2 (2007), 277-296.
  • 8S. Esedoglu and J.-H. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, Eur. J. Appl. Math., 13:4 (2002), 353-370.
  • 9H. Grossauer and O. Scherzer, Using the complex Ginzburg-Landau equation for digital inpainting in 2D and 3D, Scale Space Methods in Computer Vision, 2695 (2003), 225-236.
  • 10J.-W. Gu, L. Zhang, G.-Q. Yu, Y.-X. Xing, and Z.-Q. Chen, X-ray CT metal artifacts reduction through curvature based sinogram inpainting, Journal of X-Ray Science and Technology, 14:2 (2006), 73-82.

共引文献2

同被引文献32

引证文献4

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部