期刊文献+

具反馈控制修正Leslie-Gower和Holling Ⅱ功能性反应捕食系统的持久性和全局吸引性 被引量:9

Permanence And Global Attractivity of A Predator-Prey Model With Modified Leslie-Gower and Holling-Type Ii Schemes with Feedback Controls
原文传递
导出
摘要 研究具反馈控制修正Leslie-Gower和HollingⅡ功能性反应捕食系统,得到保证该系统解的持久性和全局吸引性的充分条件. We investigate a predator-prey model with modified Leslie-Gower, Holling-type Ⅱ schemes and feedback controls. Sufficient conditions which ensure the permanence and global attractivity of the system are obtained.
作者 李忠
出处 《数学的实践与认识》 CSCD 北大核心 2011年第7期126-130,共5页 Mathematics in Practice and Theory
基金 福建省教育厅B类(JB09004) 福州大学科技发展基金(2010-XY-19)
关键词 反馈控制 持久性 HOLLING Leslie—Gower feedback controls permanence Holling Ⅱ Leslie-Gower
  • 相关文献

参考文献6

  • 1Aziz-Alaoui M A, Daher Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling:type II schemes[J]. Applied Mathematics Letters, 2003, 16: 1069-1075.
  • 2Chen F D, Li Z, Huang Y J. Note on the permanence of a competitive system with infinite delay and feedback controls[J]. Nonlinear Analysis: Real World Applications, 2007, 8(2): 680-687.
  • 3Chen F D. The permanence and global attractivity of Lotka-Volterra competition system with feedback controls[J]. Nonlinear Analysis: Real World Applications, 2006, 7(1): 133-143.
  • 4Chen F D. Positive periodic solutions of neutral Lotka Volterra system with feedback control [J]. Applied Mathematics and Computation, 2005, 162(3): 1279-1302.
  • 5Li Zhong (College of Math, and Computer Science, Fuzhou University, Fuzhou 350002).PERMANENCE AND GLOBAL STABILITY OF A FEEDBACK CONTROL SYSTEM WITH DELAYS[J].Annals of Differential Equations,2006,22(3):310-315. 被引量:1
  • 6Barbalat I. Systems d'equations differential d'oscillations nonlinearies[J]. Rev. Roumainc Math. Pure Appl, 1959, 4(2): 267-270.

同被引文献43

  • 1鲁红英,于刚.具有时滞和反馈控制的离散Leslie系统的概周期解[J].应用泛函分析学报,2013,15(1):88-96. 被引量:3
  • 2张蓓,滕志东.一类离散的Leslie-Gower捕食被捕食模型的稳定性[J].新疆大学学报(自然科学版),2013,30(1):19-24. 被引量:1
  • 3Aziz-Alaoui M A, Daher Okiye M. Boundedness and Global Stability for a Predatorprey Model with Modified Leslie-Gower and Holling-type Ilschemes[J]. Applied Mathematics Letters ,2003,16 : 1069-1075.
  • 4Chen X X, Chen F D. Almost-periodic Solutions of a Delay Population Equation with Feedback Controls [ J ]. Nonlinear Analysis:Real World Applications ,2006,7:559-571.
  • 5Chert F D, Li Z, Huang Y J. Note on the Permanence of a Competitive System with Infinite Delay and Feedback Controls[J]. Nonlinear Analysis : Real World Applications ,2007,8:680-687.
  • 6Chen F D. Permanence of a Single Species Discrete Model with Feedback Control and Delay[ J ]. Applied Mathematics Letters, 2007,20 : 729 -733.
  • 7Zhang T W, Li Y K, Ye Y. Persistence and almost Periodic Solutions for a Discrete Fishing Model with Feedback Control[ J ]. Commun Nonlinear Sci Numer Simulat,2011,16 : 1564-1573.
  • 8Chen F D,Yang J H, Chen L J. Note on the Persistent Property of a Feedback Control System with Delays [ J ]. Nonlinear Analysis : Real World Applications ,2010,11 : 1061-1066.
  • 9Aziz-Alaoui M A, Daher Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J]. Applied Mathematics Letters, 2003, 16(7): 1069- 1075.
  • 10Yu S B. Global asymptotic stability of a predator-prey mQdel with modified Leslie-Gower and Holling-type II schemes[J]. Discrete Dynamics in Nature and Society, Volume 2012, Article ID 208167, 8 pages.

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部