摘要
得到了对于二部图G=(V1,V2;E),当│V1│=│V2│=n≥2k+1时的结果:对G中任意2k条独立边e1,e1^*,…,ek,ek^*,G中一定存在k个独立的4-圈C1,C2,…,Ck,使得对任意i∈{1,2,…,k)有{ei,ei^*) E(Gi).并在此基础上进一步证明了当│V1│=│2│=n≥3k时若对任意两顶点x∈V1,y∈V2,都有d(x)+d(Y)≥2n—k+1成立,则G有一个2-因子含有k+1个独立圈C1,C2,…,Ck+1使得对任意i∈{1,2,…,k)有{ei,ei^*} E(Ci)且│Ci│=4.
This paper obtains the conclution for a bipartite graph G = (V1, V2;E) with │V1│ = │V2│= n such that n ≥2k+1 where k ≥ 1 is an integer. That is for any 2k independent edges e1, e1^* ,ek, ek^* of G, G contains k vertex-disjoint quadrilaters C1, C2,…, Ck such that {ei, ei^*} C E(Ci)for each i {1, 2,…. , k}. On the basis of this,We further prove that if │V1│ = │V2│ = n such that n 〉 3k and d(x) + d(y) 〉 2n- k + 1 for each pair of vertices x and y of G withx ∈ V1 and y ∈ V2, then G has a 2-factor with k + lvertex-disjoint cycles C1, C2,… , Ck+1 such that {ei, ei^*} E (Ci) for each i {1, 2,… , k}, and │Ci│ = 4.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第7期207-211,共5页
Mathematics in Practice and Theory
基金
河南省杰出青年计划(084100510013)
河南省高校科技创新人才支持计划(2008 HASTIT023)
关键词
均衡二部图
独立圈
4-圈
2-因子
balance bipartite graph
vertex-disjoint cycle
quadrilateral
2-factor