期刊文献+

基于组合评价方法的关联规则兴趣度评价 被引量:2

Interestingness Evaluation of Association Rules Based on Combination Evaluation Method
下载PDF
导出
摘要 关联规则挖掘算法通常生成大量的规则,但由于资源的限制,只有少量规则可能被筛选出来使用。因此关联规则的兴趣度评价成为数据挖掘领域中的一个重要问题。考虑到关联规则兴趣度评价本质上是一个多属性决策问题,本文首先基于关联规则的客观兴趣度度量和用户的主观偏好,建立了关联规则评价指标体系;然后提出一种基于组合评价方法的关联规则评价的框架及其具体实现步骤,以解决多种评价方法评价结果不一致的问题;最后以某超市购物篮数据分析为例,基于整体差异的组合评价方法实现了关联规则的组合评价以验证所提评价方法的可行性和有效性。 Numerous rules can be generated by association rule mining algorithms.But only a small number of these rules may be selected for implementation due to the limitations of resources.Accordingly,evaluating the interestingness of association rules becomes an important issue in data mining.Since the interestingness evaluation of association rules could be a multiple attributes decision problem essentially,in this paper an evaluation index system for association rules is built based on objective interestingness measures and the users' subjective preferences,and then a framework for association rules evaluation based on combination evaluation method,together with its implementation procedures is proposed,which could deal with the inconsistency problem existing among different evaluation methods.In the end,taking market basket analysis as an example,an objective combination evaluation method based on whole diversity maximization is applied to evaluate the association rules generated from a grocery database to illustrate the feasibility and effectiveness of the proposed method.
作者 郭崇慧 张震
出处 《情报学报》 CSSCI 北大核心 2011年第4期353-360,共8页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金资助项目(70871015) 国家高技术研究发展计划(863计划)资助项目(2008AA04Z107)
关键词 关联规则 兴趣度 组合评价 购物篮分析 association rules interestingness combination evaluation market basket analysis
  • 相关文献

参考文献13

  • 1Tan P N, Steinbach M, Kumar V. Introduction to data mining [ M ]. Boston : Pearson Addison-Wesley,2005.
  • 2Choi D H,Ahn B S, Kim S H. Prioritization of association rules in data mining: Multiple criteria decision approach [ J ]. Expert Systems with Application,2005,29 (4) :867-878.
  • 3Geng L, Hamilton H J. Interestingness measures for data mining: a survey [J]. ACM Computing Surveys,2006,38 (3): 1-32.
  • 4Padmanabhan B, Tuzhilin A. A belief-driven method for discovering unexpected patterns [ C ]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, 1998 : 94-100.
  • 5Sahar S. Interestingness via what is not interesting [ C ]// Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999 : 332-336.
  • 6Lu S F, Hu H P,Li F. Mining weighted association rules [ J ]. Intelligent Data Analysis, 2001,5 ( 3 ) : 211-225.
  • 7Shen Y D, Zhang Z, Yang Q. Objective-Oriented utility-based association mining [ C ]//Proceedings of the 2002 IEEE International Conference on Data Mining, 2002: 426-433.
  • 8陈中祥,吴相林,岳超源.基于PROMETHEE的模式兴趣度评估方法研究[J].系统工程与电子技术,2003,25(9):1090-1093. 被引量:5
  • 9Chen M C. Ranking discovered rules from data mining with multiple criteria by data envelopment analysis [J]. Expert Systems with Application, 2007, 33 (.4) : 1110-1106.
  • 10Toloo M, Sohrabi B, Nalchigar S. A new method for ranking discovered rules from data mining by DEA [J]. Expert Systems with Application, 2009, 36 ( 4 ) : 8503-8508.

二级参考文献20

  • 1林元庆,陈加良.方法群评价中权重集化问题的研究[J].中国管理科学,2002,10(z1):20-22. 被引量:32
  • 2郭显光.一种新的综合评价方法──组合评价法[J].统计研究,1995,12(5):56-59. 被引量:195
  • 3杭州商学院省自然科学基金课题组.“序号总和理论”及其在综合经济效益排序中的应用[J].数量经济技术经济研究,1996(1):59-62. 被引量:26
  • 4陈珽.决策分析[M].北京:科学出版社,1987..
  • 5Padmanabhan Balaji, Tuzhilin Alexander. Unexpectedness as a Measure of Interestingness in Knowledge Discovery [ J ]. Decision Support Systems, 1999, 27:303-318.
  • 6Silberschatz Avi, Tuzhilin Alexander. On Subjective Measures of Interestingness in Knowledge Discovery [ C ]. KDD' 95, 1995.
  • 7Hilderman Robert, Hamilton Howard. Kowledge Discovery and Interestingness Measures: A Survey [ R ]. Technical Report CS 99 -04, University of Regina, Regina, Saskatchewan, Canada, 1999.
  • 8Silberschatz Avi. What Makes Patterns Interesting in Knowledge Discovery Systems [ J ]. IEEE Trans on Knowledge and Data Engineering, 1996,8(2) : 112- 121.
  • 9Freitas Alex. On Rule Interestingness Measures [ J]. Journal of Knowledge-Based Systems, 1999, 12 (5-6): 309- 315.
  • 10Brans P, Mamschal B, Vincke Ph. Promethee: A New Family of Outranking Methods in Multicriteria Analysis [J]. Operational Research, 1984: 408-421.

共引文献121

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部