期刊文献+

基于残差自然幂法的增量线性判别分析方法

Incremental Linear Discriminate Analysis Based on a Residual Natural Power Method
下载PDF
导出
摘要 提出了将增量线性判别分析问题(LDA)转化为两个增量主元分析(PCA)问题的算法框架.为加速算法的收敛速度,推导了增量LDA中训练样本的类内离散度矩阵和协方差矩阵的无损实时更新公式,并在此基础上提出了一种基于残差协方差矩阵的自然幂增量PCA算法.将该增量PCA方法与基于双PCA结构的增量LDA算法框架相结合,实现了数据流的实时LDA处理.仿真结果表明,与已有的增量LDA方法相比,该方法在收敛速度、计算复杂度和可操作性上具有更优的性能. A new algorithm with a structure containing two incremental principal component analysis(PCA) modules is proposed to solve the incremental linear discriminate analysis(LDA) problem.A residual covariance natural power(RCNP) PCA method and lossless update equations of both a within-class scatter matrix and a covariance matrix are also proposed for accelerating convergence of the incremental LDA.Simulation results show that the proposed method provides faster convergence,and better performance in complex computations and in ease of operation compared to other incremental LDAs.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期472-475,480,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61005032) 辽宁省自然科学基金资助项目(20102062) 中央高校基本科研业务费专项资金资助项目(N090404001)
关键词 线性判别分析(LDA) 主元分析(PCA) 自然幂法 无损更新 增量算法 linear discriminate analysis principal component analysis natural power method lossless update incremental algorithm
  • 相关文献

参考文献8

  • 1Chatterjee C, Royehowdhuryon V P. Self-organizingalgorithm and networks for class separability features [J]. IEEE Trans Neural Net, 1997,18(3) :663 - 678.
  • 2Moghaddam H A, Zadeh K A. Fast linear discriminate analysis for on-line pattem recognition applications[ C] //IEEE Proc of 16th ICPR. Quebec, QC, Canada, 2002 : 64 - 67.
  • 3O~a E, Karhunen J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix [ J ]. Journal of Mathematical Analysis and Application, 1985,106(1) : 69 - 84.
  • 4Sanger T D. Optimal unsupervised leaming in a single-layer linear feed forward neural network[J]. IEEE Trans Neural Networks, 1989,2(i) :459 - 473.
  • 5Weng J, Zhang Y, Hwang W S. Candid covariance-free incremental principal component analysis [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2003, 25 ( 8 ) : 1034- 1040.
  • 6Chatterjee C. Adaptive algorithms for first principal eigenvector computation [ J ]. Neural Networks, 2005, 18 (2) :145 - 159.
  • 7Fisher R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936,7(1) : 179 - 188.
  • 8Fukunaga K. Introduction to statistical pattern recognition [M]. 2nd Ed. San Diego: Academic Press, 1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部