期刊文献+

多种群并行的自适应差分进化算法 被引量:10

An Adaptive Differential Evolution Algorithm Based on a Multi-population Parallel
下载PDF
导出
摘要 为了提高搜索速度,同时克服传统算法过早陷入局部最优值的不足,提出了一种改进自适应差分进化算法.改进算法在充分分析经典和改进变异操作算子的属性以及种群统计信息的基础上,按照个体适应度的差异,将个体分成不同的子种群并相应地引入与之匹配的变异算子,转换成一个多种群并行的优化问题,保证在加快算法收敛速度的同时有效跳出局部极值点,从而实现全局优化.同时对参数值实行自适应调整,使算法达到全局搜索能力与局部搜索能力的平衡.针对8个标准测试函数的仿真实验结果表明,所提出的算法与其他算法相比具有较好的效果. A new adaptive differential evolution algorithm was put forward to improve search speed and avoid local optimal value.Sufficiently analyzing the characteristics of classic/adaptive mutation operators and the solution state,individuals were divided into three subgroups according to individual fitness values,thereby optimizing based on multiple populations,and different mutation operators were placed in different subpopulations.In addition,self-adaptive adjustment was introduced to adjust control parameters.Performance of the new approach was superior to other algorithms when tested on eight standard test functions.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期481-484,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(81000639)
关键词 差分进化算法 多种群 自适应调整 全局优化 局部最优 differential evolution algorithm multiple populations self-adaptive adjustment global optimization local optimum
  • 相关文献

参考文献11

  • 1周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:246
  • 2姜远,陈兆乾,周志华.一种基于神经网络集成的规则学习算法[J].计算机研究与发展,2003,40(10):1419-1423. 被引量:11
  • 3Store R, Price K. Differential evolution: a simple and efficient adaptive scheme for global optimization overcontinuous spaces technical report [ J ]. International Computer Science Institute, 1995(18) :22- 25.
  • 4Store R, Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4) : 341 - 359.
  • 5Kim H K, Chon J K, Park K Y, et al. Differential evolution strategy for constrained global optimization and application to practical engineering problems [ J ]. IEEE Trans on M~gnetic, 2007,43(4) :1565 - 1568.
  • 6Omran M G H, Engelbrecht A P. Self-adaptive differential evolution methods for unsupervised image classification[C]// IEEE Conference on Cybernetics and Intelligent Systems. Bangkok, 2006 : 1 - 6.
  • 7Zhang R Q, Ding J X. Non-linear optimal control of manufacturing system based on modified differential evolution [ C ]// IMACS Multi-conference on Computational Engineering in Systems Applications. Beijing, 2006:1797 - 1803.
  • 8Dhahri H, Alimi A M. The modified differential evolution and the RBF (MI)E-RBF) neural network for time series prediction [C ]//International Joint Conference on Neural Networks. Vancouver, 2006 : 2938 - 2943.
  • 9Brest J, Grdner S, Boskovic B, et al. Self adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. Journal of IEEE Trans Evolutionary Computation, 2006,10(6) :646 - 657.
  • 10Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Trans Evolutionary Computation, 1999,3 (2):82-86.

二级参考文献13

  • 1从爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,1998.59-60.
  • 2S Muggleton. Inductive logic programrnmg. In: S Muggleton ed. Inductive Logic Programming, London: Academic Press, 1992. 3-27.
  • 3Hong J. AEI: An extension matrix approximate method for the general covering problem. International Journal of Computer and Information Sciences, 1985, 14(6): 421-437.
  • 4J R Quinlan. CA. 5 : Programs for Machine Learning. San Mateo, CA: Morgan Kaufmarm, 1993.
  • 5M W Craven, J W Shavlik. Extracting tree-structured representations of trained neural networks. In: D Touretzky, M Mazer, M Hasselmo ecls. Advances in Neural Information Processing Systems 8, Cambridge, MA.. MIT Press, 1996.24 - 30.
  • 6R Setiono. Extracting rules from neural networks by pruning and hidden-unlt splitting. Neural Computation, 1997, 9 ( 1 ) : 205 -225.
  • 7R Kerber. Chi-Merge: Diseretization of numerie attributes. In: Proe of the 10th National Conf on Artifieisl Intelligence, Menlo Park, CA: AAAI Press, 1992. 123-128.
  • 8C Blake, E Keogh, C J Merz.UCI regository of machine learming databases.1998.http://www. its. uci. edu/- mlearn/MLRepository.html.
  • 9张朝晖,陆玉昌,张钹.利用神经网络发现分类规则[J].计算机学报,1999,22(1):108-112. 被引量:37
  • 10崔伟东,周志华,李星.神经网络VC维计算研究[J].计算机科学,2000,27(7):59-62. 被引量:3

共引文献252

同被引文献104

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部