期刊文献+

基于ANFIS的挖掘机器人挖掘轨迹仿真 被引量:3

Simulating the Excavating Track of a Excavator Robot Using an Adaptive Neural-Fuzzy Inference System
下载PDF
导出
摘要 为提高液压挖掘机器人工作装置挖掘作业轨迹规划控制精度,将挖掘机器人工作装置简化为斗杆、铲斗两关节二维机械臂进行分析.在建立逆运动学模型时,要将铲斗末端位姿空间与工作装置关节空间和油缸空间联系起来进行轨迹规划,以便在各个空间实现对挖掘机器人的控制.为提高跟踪期望轨迹精度,采用两个自适应神经模糊推理系统(ANFIS)分别学习两个关节的(x,y)坐标与关节角间的逆映射关系,建立了ANFIS逆映射模型.选取逆映射间的输入、输出曲面数据训练ANFIS结构,得到模糊模型的输入、输出映射曲面,实现给定的期望挖掘轨迹,获得相应的关节角.最后将得到的模糊模型用于跟踪期望的运动轨迹,仿真表明跟踪精度能够满足实际要求. To improve tracking pattern control accuracy of the working parts of a hydraulic excavator robot,analysis was conducted on the working parts which were simplified into the two-dimensional robotic arm composed of arm and bucket and two joints.When establishing an inverse kinematics model,terminal position and orientation space of the bucket and joint space and cylinder space of the working parts should relate to the tracking pattern and should control the excavator robot in each space.To improve precision in tracking the desired pattern,two adaptive neural-fuzzy inference systems(ANFIS) were used to determine inverse mapping relations between the x and y joint coordinates and joint angle,and an ANFIS inverse mapping model was established.I/O curve data of inverse mapping was selected to train ANFIS structure,with an I/O mapping curve of a fuzzy model used to obtain a corresponding joint angle based on a given desired excavation trace.Finally,the proposed fuzzy model was used to trace an expected motion pattern,and simulation results showed that tracking precision met actual demands.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期554-558,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50775029) 中央高校基本科研业务费专项资金资助项目(N090603008)
关键词 挖掘机器人 工作装置模型 神经模糊推理系统 轨迹 仿真 excavator robot working parts model neural network fuzzy inference system track simulation
  • 相关文献

参考文献9

  • 1Chang F J, Chang Y T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir [ J ]. Advances in Water Resources, 2006,29(1) : 1 - 10.
  • 2Jang J S. ANFIS: adaptive network-based fuzzy inference systems[ J ]. IEEE Transaction on System, Man and Cybernetics, 1993,23(3) :665 - 685.
  • 3刘阔.挖掘机器人工作装置电液控制技术研究[D].沈阳:东北大学,2010.
  • 4张秀玲,逄宗鹏,李少清,贾春玉.基于自适应神经模糊推理系统的板形模式识别[J].钢铁研究学报,2009,21(9):59-62. 被引量:7
  • 5Kazeminezhad M H, Etemad-Shahidi A, Mousavi S J. Application of fuzzy inference system in the prediction of wave parameters[J]. Ocean Engineering, 2005, 32 ( 14/ 15) : 1709 - 1725.
  • 6刘斌,王常虹,蔡美华.基于自适应神经模糊推理系统的陀螺建模方法[J].中国惯性技术学报,2009,17(4):474-478. 被引量:3
  • 7赵海,宋纯贺,韩叙东,朱鹏.模糊自适应控制算法在水轮机调速器建模中的应用[J].东北大学学报(自然科学版),2007,28(12):1701-1704. 被引量:5
  • 8Roger-Jang J S, Sun C T, Mizutani E. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence [ M]. Upper Saddle River: Prentice-Hall, Inc, 1997.
  • 9Ortega R. Some remarks on adaptive neuro-fuzzy systems [J]. International Journal of AMaptive Control and Signal Processing, 1996,10 : 79 - 83.

二级参考文献27

共引文献12

同被引文献40

  • 1巩明德,田博.遥操纵多自由度电液伺服并联机械手力反馈控制策略[J].吉林大学学报(工学版),2012,42(S1):62-66. 被引量:1
  • 2刘永,王克鸿,杨静宇,杜姗姗.IGM弧焊机器人大型工作站仿真系统设计[J].焊接学报,2006,27(2):59-63. 被引量:5
  • 3Chen G S,Tong R H, Qiang B G. Analysis on Flexibility of Industrial Welding Robots and Simulation Research [C]//2011 2nd International Conference on Mechanic Automation and Control Engineering. Piscataway. USA: IEEE ,2011:81 - 84.
  • 4Kajita Shuuji,Kaneko Kenji,Kaneiro Funuo,et al. Cybernetic human HRP-4C: A humanoid robot with human- like proportions [ C ]//14th International Symposium of Robotic Research. Tiergartenstrasse, Heidelberg, Germany : Springer Verlag ,2011:301 - 314.
  • 5Nakamura Y, Hirukawa H, Yamane K, et al. Humanoid robot simulator for the METI HRP project [ J ]. Robotics and Autonomous Systems,2001,37 (2/3) : 101 - 114.
  • 6Friedmann M, Petersen K, Stryk O V. Tailored real-time simulation for humanoid robots [C]//11th RobotCup International Symposium. Berlin: Springer-Verlay, 2008 : 425 - 432.
  • 7霍伟.机器人动力学与控制[M].北京:高等教育出版社.2006:16-23.
  • 8Smith R. Open dynamics engine vO. 5 user guide [ EB/ OL ]. [ 2010 - 02 - 25 ]. http ://www. ode. org/ode-latestuserguide. html.
  • 9黄宗升,秦石乔,王省书,战德军.光栅角编码器误差分析及用激光陀螺标校的研究[J].仪器仪表学报,2007,28(10):1866-1869. 被引量:26
  • 10Alavandar S,Nigam M J.Inverse kinematics solutionof 3DOF planar robot using ANFIS[].IntJofComputersCommunications&Control.2008

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部