期刊文献+

基于核函数的SOM网络流量分类方法 被引量:5

Network traffic classification method based on kernel self-organizing maps
下载PDF
导出
摘要 由于网络流量数据高度非线性,传统的自组织映射(self-organizing maps,SOM)网络对此分类的鲁棒性和可靠性较差,提出了一种基于核函数的SOM(kernel SOM,KSOM)网络流量分类方法。该方法用核函数代替原始数据在特征空间中映射值的内积,使输入空间中复杂的流量样本结构在特征空间中得到简化,实现对有多个统计特征属性的网络流量在应用层的分类。实验结果表明,KSOM能识别新应用类型的流量,较传统的SOM更适合对网络流量进行分类,其分类准确率高于NB方法。 Due to network traffic is highly nonlinear,classical self-organizing maps(SOM) is worse robustness and reliability because it adopts Euclidean distance.A network traffic classification method named kernel-SOM(KSOM) is proposed,which adopts kernel function to replace Euclidean distance.This method can simplify the complicated flow sample from input space to feature space,so achieve good classification of network traffic that has several statistic feature attributes in application layer.Experimental results demo-nstrate that KSOM can identify flows which represent new application protocol.This method has more excellent performance than tra-ditional SOM,and achieves higher classify accuracy than NB algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第4期1195-1198,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60872022) 广西研究生创新基金项目(2010105950812M21)
关键词 自组织映射网络 核函数 非线性 网络流量 分类 self-organizing maps network kernel function nonlinearity network traffic classification
  • 相关文献

参考文献10

  • 1Karagiarmis T, Papagiannaki K, Faloutsos M.BLINC:Multilevel traffic classification in the dark [C]. Philadelphia: Proc of the ACM SIGCOMM,2005:229-240.
  • 2Matti Hirvonen,Jukka-Pekka Laulajainen.Two-phased networktraffic classification method for quality of service management[C]. Proc of the 13th IEEE International Symposium on Con-sumer Electronics,2009:962-966.
  • 3Peter Teufl, Udo Payer, Michael Amling, et al. InFeCT-networktraffic classification[C].Proc of Seventh International Confere-nce on Networking,2008:439-444.
  • 4Moore A W, Zuev D.Internet traffic classification using Bayesiananalysis techniques[C].Proc of the 2005 ACM SIGMETR1CSInt'l Conf on Measurement and Modeling of Computer Systems,2005:50-60.
  • 5潘志松,陈松灿,张道强.原空间中的核SOM分类器[J].电子学报,2004,32(2):227-231. 被引量:13
  • 6Moore A W. Internet traffic classification using Bayesiananalysis techniques [EB/OL]. http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/sigmetrics/index.html,2009-11-09.
  • 7Yu Lei,Liu Huan.Feature selection for high-dimensional data:A fast correlation-based filter solution[C].Proceedings of theTwentieth International Conference on Machine Learning,2003.
  • 8Moore A W, Zuev D,Crogan M.Discriminators for use in flow-based classification[R].London:Queen Mary University of Lon-don,2005.
  • 9Kiviluoto K.Topology preservation in self-organizing maps[C].Proceeding of International Conference on Neural Networks(ICNN), 1996:294-299.
  • 10Zuev D,Moore AW.Traffic classification using a statistical ap-proach[C].Proc of the PAM.Heidelberg:Springer-Verlag,2005:321-324.

二级参考文献1

  • 1陈松灿 张道强.输入空间中的核聚类算法[R].南京:南京航空航天大学四院,2002..

共引文献12

同被引文献51

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部