期刊文献+

结合主动反馈的图像多分类框架

Efficient active feedback scheme of image multi-class classification
下载PDF
导出
摘要 为了解决图像语义分类中的训练数据不对称、小样本训练和噪声数据这3个难题,提出结合主动反馈的图像多分类框架。该框架将主动选择的策略应用到图像的多分类中,通过主动的选择出不确定的图片给用户手动标记,扩大训练图片集,提高分类的精度。为了验证该框架的有效性,提出一种有效的结合主动选择的图像多分类算法,即结合投票的DDAGSVM(decision directed acyclic graph support vector machine)算法。该算法提出了新的主动选择策略,即结合投票和旁移机制的主动选择策略。实验结果表明,该算法能有效应用到图像多分类中,比DDAGSVM和采用普通主动选择策略的DDAGSVM具有更高的分类的精度。 In order to solve three difficulties of image classification,including asymmetry of training data,small sample issue and noise sample problem,efficient active feedback scheme of image multi-class classification which introduce active selecting technique into image multi-class classification is proposed.By actively selecting doubtful images for users to label,more training samples can be gotten and more accurate classification can be done.In order to validate the scheme,an image multi-class classification algorithm combining with active selecting is fulfilled,which is named as DDAG SVM(decision directed acyclic graph support vector machine) with voting.Experiments show that the algorithm has more accuracy than DDAG SVM and DDAG SVM with normal selecting strategy,so it is effi-cient and the proposed scheme is also good for image multi-class classification.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第4期1387-1390,共4页 Computer Engineering and Design
基金 中国博士后科学基金项目(20070420711) 重庆市科委自然科学基金计划项目(2007BB2372)
关键词 多分类 图像分类 主动反馈 投票策略 决策导向无环图 multi-class classification image classification active feedback voting strategy decision directed acyclic graph
  • 相关文献

参考文献9

  • 1Su Zhong,Zhang Hongjiang,Li Stan,et al.Relevance feed-back incontent-based image retrieval:Bayesian framework, feature sub-spaces,and progressive learning[J].IEEE Transactions on ImageProcessing,2003,12(8):924-937.
  • 2易辉,宋晓峰,姜斌,王定成.基于结点优化的决策导向无环图支持向量机及其在故障诊断中的应用[J].自动化学报,2010,36(3):427-432. 被引量:22
  • 3Ritendra Datta,Dhiraj Joshi,Li Jia,et al.lmage retrieval:Ideas,in-fluences, and trends of the new age [C]. ACM Transactions onComputing Surveys,2008:1-077.
  • 4Lew M S.Content-based multimedia information retrieval:Stateof the art and challenges[J].ACM Transactions on MultimediaComputing,Communications and Applications,2006,2(1): 1-19.
  • 5Liu R,Wang H,Baba T, et al.SVM-based active feedback in imageretrieval using clustering and unlabeled data[J].Pattem Recogni-tion,2008,41 (8):2645-2655.
  • 6Hoi S C,Zhu J,Jin R,et al.Semi-supervised SVM batch mode ac-tive learning for image retrieval[C].26th IEEE Conference onComputer Vision and Pattern Recognition,2008.
  • 7Cheng J,Wang K.Active learning for image retrieval with Co-SVM[J].Pattem Recognition,2007,40(l ):330-334.
  • 8Ji Rongrong, Yao H, Wang J, et al. Clustering-based subspaceSVM ensemble for relevance feedback learning[C].IEEE Inter-national Conference on Multimedia and Expo,2008.
  • 9Qin T, Zhang X D,Liu T Y, et al.An active feedback frameworkfor image retrieval [J]. Pattern Recognition Letters,2008,29(5):637-646.

二级参考文献9

  • 1Jiang B, Staroswiecki M, Cocquempot V. Fault accommodation for nonlinear dynamic systems. IEEE Transactions on Automatic Control, 2006, 51(9): 1578-1583.
  • 2Vapnik V N. Statistical Learning Theory. New York: Wiley, 1998.
  • 3Knerr S, Personnaz L, Dreyfus G. Single-layer learning revisited: a stepwise procedure for building and training a neural network. Neurocomputing: Algorithm, Architectures and Applications. New York: Springer-Verlag, 1990.
  • 4Takahashi F, Abe S. Decision-tree-based multiclass support vector machines. In: Proceedings of the 9th International Conference on Neural Information. Washington D. C., USA: IEEE. 2002. 1418-1422.
  • 5Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAG's for multiclass classification. In: Proceedings of Neural Information Processing Systems. Massachusetts: MIT Press, 2000. 547-553.
  • 6Kijsirikul B, Ussivakual N. Multiclass support vector machines using adaptive directed acyclic graph. In: Proceedings of IEEE International Joint Conference on Neural Networks. Honolulu, USA: IEEE. 2002. 980-985.
  • 7Cristinanini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge: Cambridge University Prcss, 2000.
  • 8Ganyun L V, Cheng H Z, Zhai H B, Dong L X. Fault diagnosis of power transformer based on multi-layer SVM classifier. Electric Power Systems Research, 2005, 74(1): 1-7.
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部