期刊文献+

基于极速神经网络的协作过滤方法研究 被引量:2

Efficient collaborative filter using extreme learning machine
下载PDF
导出
摘要 协作过滤是一种有效的个性化推荐技术,针对该技术随着用户和资源的增多,数据的高维稀疏特性严重导致推荐质量的下降和计算速度减慢的问题,研究并实现了一种基于极速神经网络的协作过滤方法。采用主成分分析解决数据高维稀疏性问题,采用极速神经网络技术解决计算速度慢的问题。实验结果表明,该方法具有良好的泛化性能和学习速度,能很好的满足个性化资源推荐的需求。 Collaborative filtering as an effective technique for personalized recommendation has been widely applied in many fields,but with the increase of users and resources,high-dimensionality and scarcity has seriously degrade the recommendation quality and slow down the calculation speed.According to this problem,collaborative filtering based on extreme learning machine has been proposed and implemented.Principal component analysis is used to solve high-dimensional sparse problem,while extreme learning machine is applied to solve the problem of slow speed.Experimental results have shown that the proposed method has good generalization performance and learning speed,and it can meet the demand for personalized recommendation well.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第4期1430-1433,1437,共5页 Computer Engineering and Design
基金 陕西省教育厅科学研究计划基金项目(09JK717)
关键词 协作过滤 主成分分析 单隐藏层神经网络 极速学习机 用户兴趣模型 collaborative filtering PCA neural network extreme learning machine user interesting model
  • 相关文献

参考文献9

  • 1Schafer J B,Frankowski D,Herlocker J,et al.Collaborative filte-ring recommender systems [C]. Berlin: Lecture Notes In Com-puter Science,2007:291-324.
  • 2Bell R,Koren Y.Scalable collaborative filtering with jointly deri-ved neighborhood interpolation weights[C].IEEE InternationalConference on Data Mining,2007:43-52.
  • 3Bell R M,Koren Y, Volinsky C.Modeling relationships at mul-tiple scales to improve accuracy of large recommender systems[C]. Proceeding 13th ACM SIGKDD International Conferenceon Knowledge Discovery and Data Mining,2007.
  • 4Das A,Datar M,Garg A,et al.Google news personalization: scala-ble online collaborative filtering[C].WWW,2007:271-280.
  • 5张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 6纪良浩,王国胤.基于协作过滤的个性化服务技术研究[J].计算机工程与设计,2008,29(4):983-986. 被引量:15
  • 7Huang G-B,Zhu Q-Y, Siew C-K.Extreme learning machine: theoryand applications [J].Neurocomputing,2006,70( 1-3):489-501.
  • 8Ricardo Gacitua, Pete Sawyer, Paul Rayson. A flexible frame-work to experiment with ontology learning techniques [J].Knowledge-Based Systems,2008,21 (3): 192-199.
  • 9Brand M.Fast online SVD revisions for lightweight recommen-der systems [C].USA: SIAM International Conference on DataMining,2003:37-48.

二级参考文献21

共引文献98

同被引文献20

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部