期刊文献+

社会化推荐中基于对分网络的用户偏好预测 被引量:2

User's Preference Prediction Based on Bipartite Network in Socialization Recommendation
下载PDF
导出
摘要 本文首先阐述了对分网络算法在社会化推荐中的应用,然后分析了社会化推荐的运作机理,构建了社会化推荐模型,最后从相似用户集构建、基于对分网络的用户偏好预测和算法评价3个方面,进行了基于对分网络的用户偏好预测实现研究。评价表明对分网络方法对用户偏好预测的效果较好。 This paper first elaborates on the application of the bipartite network algorithm in socialization recommendation,and then analyzes the operational mechanism of socialization recommendation and constructs its model.Finally,the paper studies how to realize the user preference prediction based on the bipartite network in terms of the construction of the similar user set,the user preference prediction based on the bipartite network and the evaluation of algorithm.The evaluation indicates that the bipartite network method has a satisfactory effect on the user preference prediction.
作者 胡吉明
出处 《情报理论与实践》 CSSCI 北大核心 2011年第4期89-91,共3页 Information Studies:Theory & Application
基金 中央高校基本科研业务费专项资金资助项目的研究成果之一 项目编号:20101040102000008
关键词 社会化推荐 对分网络 用户偏好 预测 socialization recommendation bipartite network user preference forecast
  • 相关文献

参考文献15

  • 1RESNICK P , VARIAN H R. Recommender systems [ J ]. Communications of the ACM, 1997, 40 (3) : 56-58.
  • 2从Web2.0到推荐引擎2.0[EB/OL].http://www.seiencenet, on/m/user_ content, aspx? id = 357781.
  • 3尼尔森.全球消费者在线调查[EB/OL].http://cn.nielsen.com/site/0720cn.shtml.2009-07-20.
  • 4董丽,邢春晓,王克宏.基于不同数据集的协作过滤算法评测[J].清华大学学报(自然科学版),2009(4):590-594. 被引量:22
  • 5ZHOU T, et al. Bipartite network projection and personal recommendation [J]. Physical Review E, 2007, 76 (4) : 1-7.
  • 6AHUJA R K, ORLIN J B, et al. Improved algorithms for bipartite network flows [ J]. SIAM Journal on Computing, 1994, 23 (5) : 906-933.
  • 7LATAPY M, MAGNIEN C, VECCHIO N D. Basic notions for the analysis of large two-mode networks [ J ]. Social Networks, 2008, 30 (1):31-48.
  • 8黄晓斌.社会书签与网络信息推荐服务[J].情报理论与实践,2006,29(1):122-124. 被引量:26
  • 9A guide to recommender systems [ EB/OL], http: //www. readwrlteweb, corn/archives/recommender-systems, php.
  • 10刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435

二级参考文献116

  • 1孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

共引文献506

同被引文献24

  • 1刘韵毅,梁樑.基于用户偏好的文献推荐系统[J].情报理论与实践,2007,30(1):61-63. 被引量:5
  • 2高琪,辛乐.基于用户偏好度模型和情感计算的产品推荐算法[C]//第29届中国控制会议论文集.北京:[S.n.],2010:2891-2896.
  • 3BILLSUS D, PAZZANI M. J. Learning collaborative information filters [ J]. Department of Information and Computer Science, 1998 (5).
  • 4JOACHIMS T. A probabilistie analysis of the roeehio algorithm with TF-IDF for text categorization [ J ]. School of Computer Science, 1997 (5): 143-151.
  • 5BREESE J S, et al. Empirical analysis of predictive algorithms for collaborative fihering [ J ]. Microsoft Research, 1998 : 1-20.
  • 6AGRAWAL R, et al. Mining association rules between sets of i- tems in large databases [ J]. IBM Almaden Research Center, 1993, 5: 207-216.
  • 7SILVERSTEIN C, et al. Beyond market baskets: generalizing association rules to dependence rules [ J ]. Data Mining and Knowlodge Discovery, 1998 (2) : 39-68.
  • 8SUNG Y J, HONG J H, TAEK-SOO K. A statistical model for user preference [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005 (17) : 834-843.
  • 9LIGHTNER N J. User preference for product information in re-mote purchase evironments [ J ]. Journal of Electronic Com- merce Research, 2002 (3) : 174-184.
  • 10ROTHE P, LINDHOLM A L, HYVO"NEN A, et al. Work en- vironment preferences does age make a difference.'? [J]. Facil- ities, 2012, 1 (2): 78-95.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部