期刊文献+

非对称磁场中单摆运动的稳定性 被引量:1

Stability of pendulum motion in non-symmetric magnetic field
下载PDF
导出
摘要 从物理背景出发,研究非对称磁场中的单摆运动,得到一个带阻尼项的二阶常微分方程模型.将二阶常微分方程转化为常微分方程组,利用系数矩阵的特征值具有负实部证明方程组存在一个渐近稳定的平衡解. In this paper,the motion of pendulum in non-symmetric magnetic field is considered.From the physical background,motion equation of pendulum in non-symmetric magnetic field is constructed,which is a second-order differential equation with damping term.Asymptotically stable equilibrium solution of differential equation is obtained using eigenvalues of coefficient matrix with negative real part.
作者 罗宏
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期36-38,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11071177) 四川省教育厅自然科学基金资助项目(08zb023)
关键词 非对称磁场 单摆 平衡解 稳定性 non-symmetric magnetic field pendulum equilibrium solution stability
  • 相关文献

参考文献2

二级参考文献14

  • 1àngel Calsina,Joan Salda?a.A model of physiologically structured population dynamics with a nonlinear individual growth rate[J].Journal of Mathematical Biology.1995(4)
  • 2J. M. Cushing.The dynamics of hierarchical age-structured populations[J].Journal of Mathematical Biology.1994(7)
  • 3Morton E. Gurtin,Richard C. Maccamy.Non-linear age-dependent population dynamics[J].Archive for Rational Mechanics and Analysis.1974(3)
  • 4Ackleh A S,Deng K,Thibodeaux J.A Monotone Approxi- mation for a Size-Structured Population Model with a Gener- alized Environment[].Journal of Biological Dynamics.2007
  • 5Kato N,Oharub S,Shitaokab K.Size-Structured Plant Popu- lation Models and Harvesting Problems[].Journal of Com- putational and Applied Mathematics.2007
  • 6Kato N.A General Model of Size-Dependent Population Dy- namics with Nonlinear Growth Rate[].Journal of Mathematical Analysis and Applications.2004
  • 7Webb G F.Theory of nonlinear age-dependent population dynamics[]..1985
  • 8Holling C S.The components of predation as revealed by a study of small mammal predation of the European pine sawfly[].Canadian Entomologist.1959
  • 9CUSHING J M.Periodic Mckendrick equations for age-structured population growth[].Computers and Mathematics With Applications.1986
  • 10Metz J A J and Diekmann o ed.The Dynamics of Physiologically Structured Populations[]..1986

共引文献2

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部