期刊文献+

甚高能γ射线的地面观测设备和分析方法

Instruments and Methods of Data Analysis of Ground-Based Observation of Very-High-Energy Gamma rays
下载PDF
导出
摘要 甚高能γ射线(E≥100 GeV)是全波段天文学的重要组成部分,是研究宇宙射线高能粒子的重要窗口。由于甚高能γ射线光子本身携带着重要的物理信息,对它进行研究将极大地拓展人们对宇宙演化、宇宙高能粒子、高能粒子源、高能粒子产生机制、产生环境和发射区几何形状、高能粒子之间以及高能粒子与星际介质间相互作用的认识。随着大有效面积、宽视场、较低能量阈值、较高角分辨率切仑柯夫望远镜的问世,甚高能γ射线天文学的研究取得了极大的成功,目前发现的甚高能γ射线源已经超过90个,证认了一些甚高能γ射线源的类型,包括活动星系核(AGNs)、Wolf-Rayet星、巨型分子云(GMCs)、壳层超新星遗迹(SNRs)、脉冲星风星云(PWNe)、双星系统等。介绍了甚高能γ射线的地面观测设备,并对分析方法进行评述。 Very-high-energy(VHE, E ≥ 100 GeV),γray observation is an important part of the allpanchromatic astronomy and is a window used to investigate cosmic rays. As VHE γ-ray photons carry important physical information, study of these particles can greatly enhance our knowledge of cosmological evolution, generating mechanisms/environments/source-region geometry of high-energy cosmic-ray particles, as well as the interactions between high-energy particles or those between such particles and intergalactic medium. Imaging Atmospheric Cherenkov Telescopes (IACTs)have large effective collecting areas, wide fields of view (FoV), low-energy thresholds and high angular resolutions. These telescopes have become important tools of the VHE γ-rays astronomy. More than 90 VHE γ-rays sources have been detected by IACTs, some of which have been identified as Active Galactic Nuclei (AGN), Wolf-Rayet stars, Giant Molecular Clouds ( GMCs), shell-type Supernova Remnants ( SNRs ), Pulsar Wind Nebulae ( PWNe ), and binary-star systems. In this paper, we review instruments and methods of data analysis of ground-based VHE γ-ray observation.
出处 《天文研究与技术》 CSCD 2011年第2期113-127,共15页 Astronomical Research & Technology
关键词 甚高能γ射线 切仑柯夫望远镜 分析方法 Very-high-energy γ-rays Cherenkov telescopes Method of data analysis
  • 相关文献

参考文献40

  • 1Clark G W, Garmire G P, Kraushaar W L. Observation of High-Energy Cosmic Gamma Rays [J]. ApJ, 1968(153): 203-207.
  • 2Weekes T C. Very High Energy Gamma-ray Astronomy [ M ]. Taylor & Francis, 2003.
  • 3Weekes T C, Fazio G G, Helmken H F, et al. A Search for Discrete Sources of Cosmic Gamma Rays of Energy 10[ll] -10[12] eV [J]. ApJ, 1972(174): 165 -179.
  • 4Weekes T C, Cawley M F, Fegan D J, et al. Observation of TeV Gamma Rays from the Crab Nebula Using the Atmospheric Cerenkov Imaging Technique [ J]. ApJ, 1989 (342) : 379 - 395.
  • 5Punch M, Akerlof C W, Cawley M F, et al. Detection of TeV Photons from the Active Galaxy Markarian 421 [J]. Nature, 1992(358) : 477 -478.
  • 6Catanese M, Akerlof C W, Badran H M, et al. Discovery of Gamma-Ray Emission above 350 GeV from the BL Lacertae Object 1ES 2344 +514 [J]. ApJ, 1998, 501(2) : 616 -623.
  • 7Quinn J, Akerlof C W, Biller S, et al. Detection of Gamma Rays with E > 300 GeV from Markarian 501 [J]. ApJ, 1996, 456(2) : 83 -86.
  • 8Dazeley S A, Patterson J R. Monte Carlo Simulations of the CANGAROO I 3.8 m Imaging Erenkov Telescope [J]. APh, 2001, 15(3): 305-311.
  • 9Kifune T, Tanimori T, Ogio S, et al. Very High Energy Gamma Rays from PSR 1706-44 [J]. ApJ, 1995, 438(2): 91-94.
  • 10Muraishi H, Tanimori T, Yanagita S, et al. Evidence for TeV Gamma-ray Emission from the Shell Type SNR RX J1713.7-3946 [J]. A&A, 2000(354) : 57 -61.

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部