期刊文献+

几类凸多边形区域单叶性内径的一些注记

Some Remarks on the Inner Radius of Univalency for Convex Polygons
下载PDF
导出
摘要 根据Leila Miller-Van Wieren关于Nehari圆的判定定理,否定了关于长方形区域、等角六边形区域都是Nehari圆的猜测.并且得到边长比不超出一定范围的平行四边形区域的单叶性内径,同时证明了超出此范围的平行四边形区域不是Nehari圆. By using a theorem of Leila MiUer-Van Wieren, we get a negative answer to the conjecture that the rect- angle domains and equiangular hexagons are always Nehari disk. We also get the inner radius of univalency of the parallelogrammic domains whose ratio of longer and shorter side does not exceed an upper bound. And we prove that the parallelogrammic domains are not Nehari disk when the ratio of longer and shorter side exceeds the bound.
作者 刘晓毅
出处 《常熟理工学院学报》 2011年第2期15-19,共5页 Journal of Changshu Institute of Technology
关键词 SCHWARZ导数 单叶性内径 Nehari圆 Schwarzian derivative N ehari disk inner radius of univalency
  • 相关文献

参考文献8

  • 1Nehari Z.The Schwarzian derivative and schlicht function[J].Bull AMS,1949,55:545-551.
  • 2Kraus W.Uber den Zusammenhang einiger Charakteristiken eines einfach zusammend(a)ngenden Bereiches mit der Kreisabbildung[J].Mitt Math Serm Giessen,1932,21:1-28.
  • 3Calvis D.The inner radius of univalence of normal circular triangles and regular polygons[J].Complex Varibles,1985,(4):295-304.
  • 4Lehtinen M.On the inner radius of univalency for non-circular domains[J].Ann Acad Sci Fenn Ser A I Math,1980,(5):45-47.
  • 5Lehto O.Remarks on Nehari's theorem about the Schwarzian derivative and schlicht functions[J].J Anal Math,1979,36:184 -190.
  • 6Miller L,Wieren V.Univalence criteria for classes of rectangles and equiangular hexagon[J].Ann Acad Sci Fenn Ser A I Math,1997,22:407-424.
  • 7朱华成.菱形的单叶性内径[J].数学年刊(A辑),2001,22(1):77-80. 被引量:7
  • 8Miller L,Wieren V.On Nehari disks and the inner radius[J].Comment Math Helv,2001,76:183-199.

二级参考文献5

  • 1[1]Leila Miller-Van Wieren Univalence criteria for classes of rectanglesand equiangularhexagon [J],Ann. Acad. Sci. Fenn. Math.,22(1997),407--424
  • 2[2]David Calvis The inner radius of univalence of normal circular trianglesand regular polygons [J],Complex Varibles,(1985),295--304
  • 3[3]Lehtinen, M. On the inner radius of univalency for noncircular domains[J],Ann. Acad. Sci. Fenn. Ser., AI Math.,5(1980),45--47
  • 4[4]Lehto Remarks on Nehari's theorem about the Schwarzian derivativeand schlicht functions [J], J. Analyse Math., 26(1979), 180--190
  • 5[5]Ahlfors, L. V. Complex analysis [M], Second Ediction, McGraw-Hill, New York,1966

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部