期刊文献+

Global existence of solutions of the bipolar hydrodynamical model for semiconductors

Global existence of solutions of the bipolar hydrodynamical model for semiconductors
下载PDF
导出
摘要 In this paper we investigate a model of one-dimensional isentropic bipolar hydrodynamical on the quarter plane,which takes the form of Euler-Poisson with electric field and frictional damping added to the momentum equation.By using the classical energy method,we will prove the existence of classical solutions. In this paper we investigate a model of one - dimensional isentropie bipolar hydrodynamical on the quarter plane R+ × R+ , which takes the form of Euler - Poisson with electric field and frictional damping added to the momentum equation. By using the classical energy method, we will prove the existence of classical solutions.
作者 Zhang Ming
出处 《中国校外教育》 2011年第2期98-100,共3页 AFTERSCHOOL EDUCATION IN CHINA
关键词 物理教学 教学方法 力学 摩擦力 IBVP solutions energy method boundary bipolar hydrodynamical model
  • 相关文献

参考文献9

  • 1L. Hisao, Quasilinear Hyperbolic System and Dissipative Mechanisms, World Scientific,Singapore, 1998.
  • 2C. T. Duyn, L. A. Peletier, A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal, Theory, Methods and Application, 1997. 223-233.
  • 3I. Gasser, L. Hsiao, H. - 1. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differential Equations ,2003. 326 - 359.
  • 4L. Hsiao and T. - P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys. 1992. 599 -605.
  • 5K. Nishihara, W. Wang, T. Yang, L convergence rate to nonlinear diffusion waves for p - system with damping, J. Differential Equations, 2000. 191 -218.
  • 6B. Zhang, Convergence of the Godunov scheme for a simplified one - dimensional hydrodynamical model for semiconductor devices, Comm. Math. Phys. 1993.1 -22.
  • 7H. - L. Li, P. Markowich, M. Mei, Asymptotic behavior of subsonic shock solutions of the isentropic Euler - Poisson equations Quarterly Of Applied Mathematics, 2002. 773 - 796.
  • 8L. Hsiao and T. Yang, Asymptotic of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors, J. Differential Equations,2001. 472 -493.
  • 9G. Chen, D. Wang,Convergence of shock schemes for the compressible Euler - Poission equations, Comm. Math. Phys. 1996. 333 -364.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部