期刊文献+

基于支持向量机与结构矩的车型识别实时鲁棒算法 被引量:1

Real-Time Robust Algorithm of Vehicle Recognition Based on Support Vector Machines and Structural Matrix
下载PDF
导出
摘要 车型分类精度是目前交通环境中的研究热点.提出了一种鲁棒性好实时性强的基于支持向量机的机动车型识别方法,对车辆的类型进行分类,选择合适的结构矩为车辆特征,以支持向量机方法为学习分类器,获得了较高的车辆分类精度,在一定程度上解决了车辆分类难的问题.现场视频处理的结果表明:该法鲁棒实时有效,且车型分类精度得到了一定提高. The research of vehicle classification precision in transportation environment is hot recently.A real-time robust vehicle recognition method is proposed based on support vector machine.The method carries on a classification of vehicle type,and takes structural matrix as the vehicle characteristics and support vector machine method as the learning classifier system.It obtains high vehicle classification precision and solves the problem of vehicle classification.Experiments result of field transportation image sequence show that the algorithm is robust and efficient,and vehicle classification precision is improved.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2010年第4期14-18,共5页 Journal of Natural Science of Hunan Normal University
基金 湖南省科技厅科技计划基金资助项目(2010FJ4107)
关键词 鲁棒 实时 分类精度 支持向量机 结构矩 robust real-time classification precision support vector machines structural matrix
  • 相关文献

参考文献14

  • 1章毓晋.图像分割[M].北京:科学出版社,2001..
  • 2GONZALZRC,WOODSRE.数字图象处理[M].2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2003.
  • 3刘东.ITS中的车辆检测技术[J].中国人民公安大学学报(自然科学版),2000,6(4):36-39. 被引量:20
  • 4王广君,田金文,柳健,吴国平.基于局部最大熵的多目标图像分割方法[J].华中理工大学学报,2000,28(12):4-5. 被引量:6
  • 5ANASTASIOS D D, NIKOLAOS D D, KLIMIS S N, et al. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture[ J ]. IEEE Transactions on Neural Networks, 2003,14 ( 3 ) :227-231.
  • 6SERGIOST,KONSTANTINOSK.模式识别[M],2版.李晶皎,译.北京:电子工业出版社,2004.
  • 7VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8XIE L. Research video processing technique in Imelligent transportation system [ D]. Wuhan: Huazhong University of Science and Technology, 2006.
  • 9PASTORE J I, MOLER E G,BALLARIN V L. Segmentation of brain magnetic resonance images through morphological operators and geodesic distance[ J]. Digital Signal Processing, 2005,15 (2) : 153-160.
  • 10陈振学,刘成云,常发亮.基于生物视觉显著性的车辆车型识别[J].计算机科学,2010,37(2):207-208. 被引量:5

二级参考文献14

共引文献776

同被引文献14

  • 1邱竹贤.有色金属冶金学[M].北京:冶金工业出版社,1983.126.
  • 2沈洪远.有色冶金过程数据挖掘及其在铜锍吹炼中的应用研究[D].长沙:中南大学,2009.
  • 3Tay F, Cao L. Application of support vector machines in financial time series forecasting[ J ]. Omega, 2001, 29 (4) : 309 - 317.
  • 4Widrow B, Rumelhart D, Lehr M. Neural networks : Applications in industry, business and science [ J ]. Communications of the ACM, 1994, 37(3) : 93 -105.
  • 5Wei L, Yang Y, Nishikawa R, et al. Relevance vector machine for automatic detection of clustered microcalcifications [ J ]. IEEE transactions on medical imaging, 2005, 24(10) : 1278 - 1285.
  • 6Foody G. RVM - based multi - class classification of remotely sensed data[ J]. International Journal of Remote Sensing, 2008, 29 (6) : 1817 -1824.
  • 7Silva C, Ribeiro B. Sealing text classification with relevance vector machines [ C ]//Paper presented at : IEEE International Conference on Systems, Man and Cybernetics. (Taipei) 2006 : 4186 - 4191.
  • 8Cao L, Tay F. Support vector machine with adaptive parameters in financial time series forecasting [J].IEEE Transactions on neural networks, 2003, 14(6): 1506-1518.
  • 9Tipping M. Bayesian inference: An introduction to principles and practice in machine learning [ J ]. Lecture Notes in Computer Science, 2004, 3176:41 -62.
  • 10Tzikas D. Sparse bayesian methods for regression problems: application to the analysis of functional magnetic resonance images [D]. Ioannina, Greece, 2004.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部