期刊文献+

PRP及RGD联合修饰表面改性后仿生基质对ADSCs生物学行为的调控 被引量:3

The biological response of loading ADSCs to surface topography of biomimetic matrix combined PRP with RGD modification
原文传递
导出
摘要 目的 评估富血小板血浆(plateletrichplasma,PRP)及精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp.RGD)联合修饰表面改性后支架的细胞生物学特征,验证优化界面整合的方法。方法兔脂肪基质干细胞成骨诱导化,nB-TCP/Cs/PCL仿生基质Nd:YAG激光处理,表面改性及细胞接种:A组(PRP凝胶加RGD修饰表面改性基质加ADSCs)、B组(RGD修饰表面改性基质加ADSCs)、C组(表面改性基质加ADSCs)、D组(未表面改性基质加ADSCs);第1、4、8、12、16、20、24、28天,显微镜和电镜、共聚焦技术观察和检测细胞的存活率、增殖活力、Westenblot测定碱性磷酸酶及I型胶原蛋白表达活性,分析Runx2与OPG表达。结果A组细胞生长旺盛、细胞外基质丰富,存活率高于其它组(88.16±1.29,P〈0.05),增殖活力、碱性磷酸酶及I型胶原水平均高于其它组(0.92±0.13,87.27.4-3.08,93.27±3.91,P〈O.05),Runx2和OPG表达显著。结论PRP及RGD修饰联合支架表面改性能促进细胞增殖,为理想的骨整合方法。 Objective To evaluate the biological potential of surface topography of biomimetic matrix combined PRP gels with RGD modification. Methods Surface topography of nβ-TCP/Cs/PCL matrix was made by Nd:YAG laser, tlssue-engineered bone was constructed in the following ways: ADSCs were loaded to nβ-TCP/Cs/PCL matrix with PRP gels plus RGD modification (group A), ADSCs were cultured to nβ-TCP/ Cs/PCL matrix with RGD modification (group B), ADSCs implantation with topography-surfaced treatment of matrix (group C), ADSCs cultivation with smooth-surfaced treatment of matrix (group D). SEM and CLM were used to observe cellular pattern, survival rate, cell activity, ALP and collagen type I level were detected at 1 , 4, 8, 12, 16, 20, 24,28 days. Runx2 and OPG expressions were assayed at different interval. Results Under observation of SEM and CLM, new tissue showed more remarkable cell proliferation with abundant ECM in group A. Compared with other groups, the survival rate in group A was significantly higher (88.16 +- 1.29, P 〈 0.05),and the level of cell activity, ALP, collagen type I were significantly higher (0.92 ± 0.13, 87.27 ± 3.08, 93.27 ± 3.91, P〈 0.05), and remarkable expression of Runx2 and OPG was also seen. Conclusion Topography-surfaced treatment of matrix combined PRP gels with RGD modification enhances the cell proliferation and acts as a feasible osteopromotive method.
出处 《中华显微外科杂志》 CSCD 北大核心 2010年第6期469-472,F0003,共5页 Chinese Journal of Microsurgery
基金 天津市卫生局科技基金资助项目(06KZ46):天津市教委科技基金资助项目(20090125)
关键词 脂肪基质干细胞 富血小板血浆 精氨酸-甘氨酸-天冬氨酸 表面改性 仿生基质 Adipose derived stromal cells Platelet rich plasma Arg-Gly-Asp Surface topog-raphy Biomimetic matrix
  • 相关文献

参考文献6

  • 1Petrie TA, Raynor JE, Reyes CD, et al. The effect of inte- grin-specific bioactive coatings on tissue healing and im- plant osseointegration. Biomaterials, 2008,29:2849 - 2857.
  • 2郭洪刚,刘静,李峰坦,刘海峰,姚芳莲,姚康德.基于三维CT图像重建研制纳米仿生骨基质支架的研究[J].中国矫形外科杂志,2009,17(20):1562-1565. 被引量:4
  • 3郭洪刚,刘海峰,姚康德,尹玉姬,马信龙.凝胶包埋兔脂肪基质细胞接种三维支架动态构建组织工程化骨[J].中华实验外科杂志,2008,25(8):1030-1032. 被引量:5
  • 4Woo KM, Seo J, Zhang R, et al. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials, 2007,28 : 2622 - 2630.
  • 5Monjo M, Lamolle SF, Lyngstadaas SP, et al. In vivo ex- pression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants. Bioma- terials, 2008,29 : 3771 - 3780.
  • 6Lim TY, Wang W, Shi Z, et al. Human bone marrow- derived mesenchymal stem cells and osteoblast differentia- tion on titanium with surface-grafted chitosan and immobi- lized bone morphogenetic protein-2. J Mater Sci Mater Med, 2009,20:1 - 10.

二级参考文献14

  • 1吕仁发,周强,许建中,罗飞,曾玲.种子细胞双相接种技术促进组织工程骨体外成熟的研究[J].中华创伤杂志,2006,22(4):291-295. 被引量:5
  • 2郝伟,胡蕴玉,魏义勇,姜明,庞龙,白建萍,吕荣,王军.脂肪干细胞/Ⅰ型胶原凝胶复合体的构建及其体内外成骨分化研究[J].中华实验外科杂志,2007,24(6):659-661. 被引量:15
  • 3Ouyang A, Yang ST. Effects of mixing intensity on cell seeding and proliferation in three-dimensional fibrous matrices. Biotechnol Bioeng, 2007,96:371-380.
  • 4Mauney JR, Blumberg J, Pirun M, et al. Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro. Tissue Eng,2004,10:81-92.
  • 5Kaspar D, Seidl W, Neidlinger-Wilke C, et al. In vitro effects of dynamic strain on the proliferative and metabolic activity of human osteoblasts. J Museuloskelet Neuronal Interact,2000,1 : 161-164.
  • 6Stops AJ, McMahon LA, O' Mahoney D, et al. A finite element predicition of strainon cells in a highly porous collagen-glycosaminoglcan scaffold [J]. J Biomech Eng, 2008, 60: 610-612.
  • 7Quadrani P, Pasini A, Matiolli-belmonte M, et al. High-resolution 3D scaffold model for engineered tissue fabrication using a rapid prototyping technique [ J ]. Med Biol Eng Comput, 2005, 2: 196 - 199.
  • 8Pehola SM, Melchels FP, Grijpma DW, et al. A review of rapid prototyping techniques for tissue engineering purposes [ J ]. Ann Med, 2008, 4 : 268 -280.
  • 9Fritsch A, Hellmich C. Universal microstructure patterns in cortical andtrabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity [ J ]. J Theor Biol, 2007, 40 : 597 - 620.
  • 10Racila M, Crolet JM. Human conical bone: computer method for physical behavior at nanoscale constant pressure assumption [ J ]. Technol Health Care, 2006, 5 : 379 - 392.

共引文献7

同被引文献50

  • 1Albee FH.Transplantation of a portion of the tibia into the spine for Pott's disease:a preliminary report 1911[J].Clin Orthop,2007,460:14-16.
  • 2Hibbs RA.An operation for progressive spinal deformities:a preliminary report of three cases from the service of the orthopaedic hospital.1911[J].Clin Orthop,2007,460:17-20.
  • 3Eleraky M,Papanastassiou I,Tran ND,et al.Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors[J].Eur Spine J,2011,8:1363-1370.
  • 4Aoki Y,Yamagata M,Nakajima F,et al.Examining risk factors for posterior migration of fusion cages following transforaminal lumbar interbody fusion:a possible limitation of unilateral pedicle screw fixation[J].J Neurosurg Spine,2010,3:381-387.
  • 5Yamagata T,Takami T,Uda T,et al.Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion:cage subsidence and cervical alignment[J].J Clin Neurosci,2012,12:1673-1678.
  • 6Palepu V,Kodigudla M,Goel VK.Biomechanics of disc degeneration[J].Adv Orthop,2012,2012:1-17.
  • 7Cunningham BW,Orbegoso CM,Dmitriev AE,et al.The effect of spinal instrumentation particulate wear debris.an in vivo rabbit model and applied clinical study of retrieved instrumentation cases[J].Spine J,2003,1:19-32.
  • 8Tuan RS,Lee FY,Yi TK,et al.What are the local and systemic biologic reactions and mediators to wear debris,and what host factors determine or modulate the biologic response to wear particles[J].J Am Acad Orthop Surg,2008,16:42-48.
  • 9Lassus J,Salo J,Jiranek WA,et al.Macrophage activation results in bone resorption[J].Clin Orthop,1998,352:7-15.
  • 10Wang JC,Yu WD,Sandhu HS,et al.Metal debris from titanium spinal implants[J].Spine(Phila Pa 1976),1999,9:899-903.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部